图片处理OpenCV IMDecode模式说明【生产问题处理】

2023-12-03 11:15

本文主要是介绍图片处理OpenCV IMDecode模式说明【生产问题处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV IMDecode模式说明【生产问题处理】

1 前言

今天售后同事反馈说客户使用我们的图片处理,将PNG图片处理为JPG图片之后,变为了白板。

  • 我们图片处理使用的是openCV来进行处理

2 分析

2.1 图片是否损坏:非标准PNG头部

于是,马上写了一个demo尝试本地复现,结果复现概率是:必现。

package mainimport ("fmt""gocv.io/x/gocv"_ "image/jpeg"_ "image/png""io""os"
)func main() {params := []int{gocv.IMWriteJpegQuality, 1}srcFile, err := os.Open("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/3.png")if err != nil {fmt.Printf("%v", err)return}defer srcFile.Close()imageBuf, err := io.ReadAll(srcFile)if err != nil {fmt.Printf("%v", err)return}mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)if err != nil {fmt.Printf("%v", err)return}buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)//buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)if err != nil {fmt.Printf("%v", err)return}os.WriteFile("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/33.jpg", buf.GetBytes(), os.ModePerm)if err != nil {fmt.Printf("%v", err)return}println("DONE.....")
}

接着尝试将我本地其他的PNG图片转换为JPG,发现可以转换成功。表示这个代码是可以将PNG转换为JPG的。

于是,开始排查是否是客户图片有破损,比如图片的文件头已经损坏,导致它不是一个标准的PNG图片。

在这里插入图片描述

通过查阅资料后发现PNG的头部为89 50 4E 47 0D 0A 1A 0A
在这里插入图片描述

package mainimport ("encoding/hex""fmt""os"
)func main() {filePath := "/Users/xsky/GolandProjects/xxx/image-encoder/demo/quality/11.png" // 替换为你的 PNG 图片文件路径file, err := os.Open(filePath)if err != nil {fmt.Println("Error opening file:", err)return}defer file.Close()header := make([]byte, 8)_, err = file.Read(header)if err != nil {fmt.Println("Error reading file:", err)return}fmt.Println("PNG 文件头的16进制信息:")//89504e470d0a1a0a//89504e470d0a1a0afmt.Println(hex.EncodeToString(header))
}

最终验证发现,客户的PNG图片与我本地PNG图片一致,文件头都是符合PNG格式的。

2.2 Alpha图像通道问题(shooting)

接着想着客户图像是灰白色的,而我之前验证的本地图片为彩色,加上我自己gocv处理图片的参数选择的是gocv.IMReadUnchanged。点进去查看源码,发现还有其他的参数,于是尝试替换其他参数。

//我之前代码的用法
mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
// IMReadUnchanged return the loaded image as is (with alpha channel,
//otherwise it gets cropped).
IMReadUnchanged IMReadFlag = -1 # 处理带有Alpha参数的图像
// IMReadColor always converts image to the 3 channel BGR color image.
IMReadColor IMReadFlag = 1 # 将图片转换为BGR三色通道
// IMReadAnyColor the image is read in any possible color format.
IMReadAnyColor IMReadFlag = 4 # 根据图像自动识别任何可能的格式
...

知道这个参数之后,我将gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)中的IMReadUnchanged改为IMReadAnyColor,最后验证,成功处理客户图片。

目前可以知道,我的图像处理参数选择有问题。于是开始查这几种参数有什么区别。其实点进去看源码就可以知道这几种参数的区别。

这个时候如果对图像处理不熟悉的朋友可能会问,Alpha通道是什么意思,其实大家可以简单的理解为和图像的透明度有关。

为了验证这个结论是否正确,我尝试读取客户的PNG和我本地的彩色PNG的颜色Model是否不同:

//color.RGBAModel # 我自己的图像
//color.Gray16Model # 客户的图像

至此,猜想成立,可以知道是我图像的处理颜色的参数选择有误。

3 拓展:图像color.Model

色彩模型(RGB,RGBA,CMYK灰度)
matplotlib中的色彩定义主要用到了RGB、RGBA、CMYK、灰色四种模型。

  • 这里我主要介绍RGBA模型

对这块感兴趣的朋友可以去看这边文章:https://blog.csdn.net/mighty13/article/details/113616772

3.1 color.RGBAModel:三色+Alpha

带有alpha[RGBA 表示传统的32位预处理 Alpha 色,每个颜色都有8位,分别表示红色,绿色,蓝色和阿尔法。 ]

type RGBA struct {R, G, B, A uint8
}

3.2 color.RGBA64Model:64位表示三色+Alpha的值

带有alpha:64位数来表示每个通道的值

type RGBA64 struct {R, G, B, A uint16
}

3.3 color.NRGBAModel:其他颜色不预乘Alpha的值

NRGBA 表示非 Alpha 预乘32位颜色(非 alpha 预乘表示在进行颜色合成时,颜色值不会提前乘以 alpha 通道的值)

  • 预乘:什么是预乘?假设一个像素点,用RGBA四个分量来表示,记做(R,G,B,A),那预乘后的像素就是(RA,GA,B*A, A),这里A的取值范围是[0,1]。所以,预乘就是每个颜色分量都与该像素的alpha分量预先相乘。可以发现,对于一个没有透明度,或者说透明度为1的像素来说,预乘不预乘结果都是一样的。
  • NRGBA代表一个没有32位透明度加乘的颜色。每个红,绿,蓝和透明度都是8bit的数值
type NRGBA struct {R, G, B, A uint8
}

3.4 color.NRGBA64:非预乘Alpha,其他颜色用64位表示

NRGBA64 表示非 alpha 预乘 64 位颜色,每个红色,绿色,蓝色和 alpha 有 16 位

  • NRGBA64代表无透明度加乘的64-bit的颜色,它的每个红,绿,蓝,和透明度都是个16bit的数值。
type NRGBA struct {R, G, B, A uint16
}

3.5 color.AlphaModel:代表一个8-bit的透明度

type Alpha struct {A uint8
}

3.6 color.Alpha16Model:代表一个16位的透明度

type Alpha struct {A uint16
}

3.7 color.GrayModel:灰度通道,黑白图像

只有一个灰度通道,通常用于表示黑白图像【当你需要读取只带有灰度通道的图像时,你应该使用该标志来读取图像。】【也是由RGB组成,不过由于是单通道,因此呈现灰度】

3.8 color.Gray16Model:16位整数表示灰度通道值

16位整数表示灰度通道的值,通常用于表示黑白

参考:

  • https://blog.csdn.net/zxcasd11/article/details/109446056
  • https://blog.csdn.net/u013943420/article/details/76855416

这篇关于图片处理OpenCV IMDecode模式说明【生产问题处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449244

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2