图片处理OpenCV IMDecode模式说明【生产问题处理】

2023-12-03 11:15

本文主要是介绍图片处理OpenCV IMDecode模式说明【生产问题处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV IMDecode模式说明【生产问题处理】

1 前言

今天售后同事反馈说客户使用我们的图片处理,将PNG图片处理为JPG图片之后,变为了白板。

  • 我们图片处理使用的是openCV来进行处理

2 分析

2.1 图片是否损坏:非标准PNG头部

于是,马上写了一个demo尝试本地复现,结果复现概率是:必现。

package mainimport ("fmt""gocv.io/x/gocv"_ "image/jpeg"_ "image/png""io""os"
)func main() {params := []int{gocv.IMWriteJpegQuality, 1}srcFile, err := os.Open("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/3.png")if err != nil {fmt.Printf("%v", err)return}defer srcFile.Close()imageBuf, err := io.ReadAll(srcFile)if err != nil {fmt.Printf("%v", err)return}mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)if err != nil {fmt.Printf("%v", err)return}buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)//buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)if err != nil {fmt.Printf("%v", err)return}os.WriteFile("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/33.jpg", buf.GetBytes(), os.ModePerm)if err != nil {fmt.Printf("%v", err)return}println("DONE.....")
}

接着尝试将我本地其他的PNG图片转换为JPG,发现可以转换成功。表示这个代码是可以将PNG转换为JPG的。

于是,开始排查是否是客户图片有破损,比如图片的文件头已经损坏,导致它不是一个标准的PNG图片。

在这里插入图片描述

通过查阅资料后发现PNG的头部为89 50 4E 47 0D 0A 1A 0A
在这里插入图片描述

package mainimport ("encoding/hex""fmt""os"
)func main() {filePath := "/Users/xsky/GolandProjects/xxx/image-encoder/demo/quality/11.png" // 替换为你的 PNG 图片文件路径file, err := os.Open(filePath)if err != nil {fmt.Println("Error opening file:", err)return}defer file.Close()header := make([]byte, 8)_, err = file.Read(header)if err != nil {fmt.Println("Error reading file:", err)return}fmt.Println("PNG 文件头的16进制信息:")//89504e470d0a1a0a//89504e470d0a1a0afmt.Println(hex.EncodeToString(header))
}

最终验证发现,客户的PNG图片与我本地PNG图片一致,文件头都是符合PNG格式的。

2.2 Alpha图像通道问题(shooting)

接着想着客户图像是灰白色的,而我之前验证的本地图片为彩色,加上我自己gocv处理图片的参数选择的是gocv.IMReadUnchanged。点进去查看源码,发现还有其他的参数,于是尝试替换其他参数。

//我之前代码的用法
mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
// IMReadUnchanged return the loaded image as is (with alpha channel,
//otherwise it gets cropped).
IMReadUnchanged IMReadFlag = -1 # 处理带有Alpha参数的图像
// IMReadColor always converts image to the 3 channel BGR color image.
IMReadColor IMReadFlag = 1 # 将图片转换为BGR三色通道
// IMReadAnyColor the image is read in any possible color format.
IMReadAnyColor IMReadFlag = 4 # 根据图像自动识别任何可能的格式
...

知道这个参数之后,我将gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)中的IMReadUnchanged改为IMReadAnyColor,最后验证,成功处理客户图片。

目前可以知道,我的图像处理参数选择有问题。于是开始查这几种参数有什么区别。其实点进去看源码就可以知道这几种参数的区别。

这个时候如果对图像处理不熟悉的朋友可能会问,Alpha通道是什么意思,其实大家可以简单的理解为和图像的透明度有关。

为了验证这个结论是否正确,我尝试读取客户的PNG和我本地的彩色PNG的颜色Model是否不同:

//color.RGBAModel # 我自己的图像
//color.Gray16Model # 客户的图像

至此,猜想成立,可以知道是我图像的处理颜色的参数选择有误。

3 拓展:图像color.Model

色彩模型(RGB,RGBA,CMYK灰度)
matplotlib中的色彩定义主要用到了RGB、RGBA、CMYK、灰色四种模型。

  • 这里我主要介绍RGBA模型

对这块感兴趣的朋友可以去看这边文章:https://blog.csdn.net/mighty13/article/details/113616772

3.1 color.RGBAModel:三色+Alpha

带有alpha[RGBA 表示传统的32位预处理 Alpha 色,每个颜色都有8位,分别表示红色,绿色,蓝色和阿尔法。 ]

type RGBA struct {R, G, B, A uint8
}

3.2 color.RGBA64Model:64位表示三色+Alpha的值

带有alpha:64位数来表示每个通道的值

type RGBA64 struct {R, G, B, A uint16
}

3.3 color.NRGBAModel:其他颜色不预乘Alpha的值

NRGBA 表示非 Alpha 预乘32位颜色(非 alpha 预乘表示在进行颜色合成时,颜色值不会提前乘以 alpha 通道的值)

  • 预乘:什么是预乘?假设一个像素点,用RGBA四个分量来表示,记做(R,G,B,A),那预乘后的像素就是(RA,GA,B*A, A),这里A的取值范围是[0,1]。所以,预乘就是每个颜色分量都与该像素的alpha分量预先相乘。可以发现,对于一个没有透明度,或者说透明度为1的像素来说,预乘不预乘结果都是一样的。
  • NRGBA代表一个没有32位透明度加乘的颜色。每个红,绿,蓝和透明度都是8bit的数值
type NRGBA struct {R, G, B, A uint8
}

3.4 color.NRGBA64:非预乘Alpha,其他颜色用64位表示

NRGBA64 表示非 alpha 预乘 64 位颜色,每个红色,绿色,蓝色和 alpha 有 16 位

  • NRGBA64代表无透明度加乘的64-bit的颜色,它的每个红,绿,蓝,和透明度都是个16bit的数值。
type NRGBA struct {R, G, B, A uint16
}

3.5 color.AlphaModel:代表一个8-bit的透明度

type Alpha struct {A uint8
}

3.6 color.Alpha16Model:代表一个16位的透明度

type Alpha struct {A uint16
}

3.7 color.GrayModel:灰度通道,黑白图像

只有一个灰度通道,通常用于表示黑白图像【当你需要读取只带有灰度通道的图像时,你应该使用该标志来读取图像。】【也是由RGB组成,不过由于是单通道,因此呈现灰度】

3.8 color.Gray16Model:16位整数表示灰度通道值

16位整数表示灰度通道的值,通常用于表示黑白

参考:

  • https://blog.csdn.net/zxcasd11/article/details/109446056
  • https://blog.csdn.net/u013943420/article/details/76855416

这篇关于图片处理OpenCV IMDecode模式说明【生产问题处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449244

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言