SHAP(六):使用 XGBoost 和 HyperOpt 进行信用卡欺诈检测

2023-12-03 05:20

本文主要是介绍SHAP(六):使用 XGBoost 和 HyperOpt 进行信用卡欺诈检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP(六):使用 XGBoost 和 HyperOpt 进行信用卡欺诈检测

本笔记本介绍了 XGBoost Classifier 在金融行业中的实现,特别是在信用卡欺诈检测方面。 构建 XGBoost 分类器后,它将使用 HyperOpt 库(sklearn 的 GridSearchCV 和 RandomziedSearchCV 算法的替代方案)来调整各种模型参数,目标是实现正常交易和欺诈交易分类的最大 f1 分数。 作为模型评估的一部分,将计算 f1 分数度量,为分类构建混淆矩阵,生成分类报告并绘制精确召回曲线。 最后,将根据 XGBoost 的内部算法以及特征重要性的 SHAP 实现来计算和绘制特征重要性。

来源:https://github.com/albazahm/Credit_Card_Fraud_Detection_with_XGBoost_and_HyperOpt/tree/master

1. Loading Libraries and Data

#loading libraries
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score, make_scorer, confusion_matrix, classification_report, precision_recall_curve, plot_precision_recall_curve, average_precision_score, auc
from sklearn.model_selection import train_test_split
import seaborn as sns
from hyperopt import hp, fmin, tpe, Trials, STATUS_OK
import xgboost as xgb
import shap
# Any results you write to the current directory are saved as output.
/kaggle/input/creditcardfraud/creditcard.csv
#loading the data into a dataframe
credit_df = pd.read_csv('./creditcard.csv')

2. Data Overview

#preview of the first 10 rows of data
credit_df.head(10)
TimeV1V2V3V4V5V6V7V8V9...V21V22V23V24V25V26V27V28AmountClass
00.0-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.363787...-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.620
10.01.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425...-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.690
21.0-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.514654...0.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.660
31.0-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024...-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.500
42.0-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.817739...-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.990
52.0-0.4259660.9605231.141109-0.1682520.420987-0.0297280.4762010.260314-0.568671...-0.208254-0.559825-0.026398-0.371427-0.2327940.1059150.2538440.0810803.670
64.01.2296580.1410040.0453711.2026130.1918810.272708-0.0051590.0812130.464960...-0.167716-0.270710-0.154104-0.7800550.750137-0.2572370.0345070.0051684.990
77.0-0.6442691.4179641.074380-0.4921990.9489340.4281181.120631-3.8078640.615375...1.943465-1.0154550.057504-0.649709-0.415267-0.051634-1.206921-1.08533940.800
87.0-0.8942860.286157-0.113192-0.2715262.6695993.7218180.3701450.851084-0.392048...-0.073425-0.268092-0.2042331.0115920.373205-0.3841570.0117470.14240493.200
99.0-0.3382621.1195931.044367-0.2221870.499361-0.2467610.6515830.069539-0.736727...-0.246914-0.633753-0.120794-0.385050-0.0697330.0941990.2462190.0830763.680

10 rows × 31 columns

#displaying descriptive statistics
credit_df.describe()
TimeV1V2V3V4V5V6V7V8V9...V21V22V23V24V25V26V27V28AmountClass
count284807.0000002.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+05...2.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+05284807.000000284807.000000
mean94813.8595753.919560e-155.688174e-16-8.769071e-152.782312e-15-1.552563e-152.010663e-15-1.694249e-15-1.927028e-16-3.137024e-15...1.537294e-167.959909e-165.367590e-164.458112e-151.453003e-151.699104e-15-3.660161e-16-1.206049e-1688.3496190.001727
std47488.1459551.958696e+001.651309e+001.516255e+001.415869e+001.380247e+001.332271e+001.237094e+001.194353e+001.098632e+00...7.345240e-017.257016e-016.244603e-016.056471e-015.212781e-014.822270e-014.036325e-013.300833e-01250.1201090.041527
min0.000000-5.640751e+01-7.271573e+01-4.832559e+01-5.683171e+00-1.137433e+02-2.616051e+01-4.355724e+01-7.321672e+01-1.343407e+01...-3.483038e+01-1.093314e+01-4.480774e+01-2.836627e+00-1.029540e+01-2.604551e+00-2.256568e+01-1.543008e+010.0000000.000000
25%54201.500000-9.203734e-01-5.985499e-01-8.903648e-01-8.486401e-01-6.915971e-01-7.682956e-01-5.540759e-01-2.086297e-01-6.430976e-01...-2.283949e-01-5.423504e-01-1.618463e-01-3.545861e-01-3.171451e-01-3.269839e-01-7.083953e-02-5.295979e-025.6000000.000000
50%84692.0000001.810880e-026.548556e-021.798463e-01-1.984653e-02-5.433583e-02-2.741871e-014.010308e-022.235804e-02-5.142873e-02...-2.945017e-026.781943e-03-1.119293e-024.097606e-021.659350e-02-5.213911e-021.342146e-031.124383e-0222.0000000.000000
75%139320.5000001.315642e+008.037239e-011.027196e+007.433413e-016.119264e-013.985649e-015.704361e-013.273459e-015.971390e-01...1.863772e-015.285536e-011.476421e-014.395266e-013.507156e-012.409522e-019.104512e-027.827995e-0277.1650000.000000
max172792.0000002.454930e+002.205773e+019.382558e+001.687534e+013.480167e+017.330163e+011.205895e+022.000721e+011.559499e+01...2.720284e+011.050309e+012.252841e+014.584549e+007.519589e+003.517346e+003.161220e+013.384781e+0125691.1600001.000000

8 rows × 31 columns

#exploring datatypes and count of non-NULL rows for each feature
credit_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Time      284807 non-null float64
V1        284807 non-null float64
V2        284807 non-null float64
V3        284807 non-null float64
V4        284807 non-null float64
V5        284807 non-null float64
V6        284807 non-null float64
V7        284807 non-null float64
V8        284807 non-null float64
V9        284807 non-null float64
V10       284807 non-null float64
V11       284807 non-null float64
V12       284807 non-null float64
V13       284807 non-null float64
V14       284807 non-null float64
V15       284807 non-null float64
V16       284807 non-null float64
V17       284807 non-null float64
V18       284807 non-null float64
V19       284807 non-null float64
V20       284807 non-null float64
V21       284807 non-null float64
V22       284807 non-null float64
V23       284807 non-null float64
V24       284807 non-null float64
V25       284807 non-null float64
V26       284807 non-null float64
V27       284807 non-null float64
V28       284807 non-null float64
Amount    284807 non-null float64
Class     284807 non-null int64
dtypes: float64(30), int64(1)
memory usage: 67.4 MB

3. Data Preparation

在这里,我们查找并删除数据中的重复观测值,定义用于分类的自变量 (X) 和因变量 (Y),并分离出验证集和测试集。

#checking for duplicated observations
credit_df.duplicated().value_counts()
False    283726
True       1081
dtype: int64
#dropping duplicated observations
credit_df = credit_df.drop_duplicates()
#defining independent (X) and dependent (Y) variables from dataframe
X = credit_df.drop(columns = 'Class')
Y = credit_df['Class'].values
#splitting a testing set from the data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, stratify = Y, random_state = 42)
#splitting a validation set from the training set to tune parameters
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.20, stratify = Y_train, random_state = 42)

4. Model Set-Up and Training

在本节中,我们基于 f1 度量创建一个评分器,并为 XGBoost 模型定义参数搜索空间。 此外,我们定义了一个包含分类器的函数,提取其预测,计算损失并将其提供给优化器。 最后,我们使用所需的设置初始化优化器,运行它并查看试验中的参数和分数。

#creating a scorer from the f1-score metric
f1_scorer = make_scorer(f1_score)
# defining the space for hyperparameter tuning
space = {'eta': hp.uniform("eta", 0.1, 1),'max_depth': hp.quniform("max_depth", 3, 18, 1),'gamma': hp.uniform ('gamma', 1,9),'reg_alpha' : hp.quniform('reg_alpha', 50, 200, 1),'reg_lambda' : hp.uniform('reg_lambda', 0, 1),'colsample_bytree' : hp.uniform('colsample_bytree', 0.5, 1),'min_child_weight' : hp.quniform('min_child_weight', 0, 10, 1),'n_estimators': hp.quniform('n_estimators', 100, 200, 10)}
#defining function to optimize
def hyperparameter_tuning(space):clf = xgb.XGBClassifier(n_estimators = int(space['n_estimators']),       #number of trees to useeta = space['eta'],                              #learning ratemax_depth = int(space['max_depth']),             #depth of treesgamma = space['gamma'],                          #loss reduction required to further partition treereg_alpha = int(space['reg_alpha']),             #L1 regularization for weightsreg_lambda = space['reg_lambda'],                #L2 regularization for weightsmin_child_weight = space['min_child_weight'],    #minimum sum of instance weight needed in childcolsample_bytree = space['colsample_bytree'],    #ratio of column sampling for each treenthread = -1)                                    #number of parallel threads usedevaluation = [(X_train, Y_train), (X_val, Y_val)]clf.fit(X_train, Y_train,eval_set = evaluation,early_stopping_rounds = 10,verbose = False)pred = clf.predict(X_val)pred = [1 if i>= 0.5 else 0 for i in pred]f1 = f1_score(Y_val, pred)print ("SCORE:", f1)return {'loss': -f1, 'status': STATUS_OK }
# run the hyper paramter tuning
trials = Trials()
best = fmin(fn = hyperparameter_tuning,space = space,algo = tpe.suggest,max_evals = 100,trials = trials)print (best)
SCORE:                                                 
0.7552447552447553                                     
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                            
0.0                                                                               
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.6666666666666666                                                                 
SCORE:                                                                             
0.7737226277372262                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.7891156462585034                                                                 
SCORE:                                                                             
0.7401574803149605                                                                 
SCORE:                                                                             
0.7737226277372262                                                                 
SCORE:                                                                             
0.7971014492753624                                                                 
SCORE:                                                                             
0.7499999999999999                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7552447552447553                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7883211678832117                                                                 
SCORE:                                                                             
0.7891156462585034                                                                 
SCORE:                                                                             
0.7737226277372262                                                                 
SCORE:                                                                             
0.782608695652174                                                                  
SCORE:                                                                             
0.8055555555555555                                                                 
SCORE:                                                                             
0.7401574803149605                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7552447552447553                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7737226277372262                                                                 
SCORE:                                                                             
0.7499999999999999                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.8085106382978723                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7401574803149605                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7972972972972973                                                                 
SCORE:                                                                             
0.608695652173913                                                                  
SCORE:                                                                             
0.7552447552447553                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7384615384615385                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.802919708029197                                                                  
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.8201438848920864                                                                 
SCORE:                                                                             
0.8201438848920864                                                                 
SCORE:                                                                             
0.8201438848920864                                                                 
SCORE:                                                                             
0.8085106382978723                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.8085106382978723                                                                 
SCORE:                                                                             
0.7910447761194029                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7819548872180451                                                                 
SCORE:                                                                             
0.802919708029197                                                                  
SCORE:                                                                             
0.8085106382978723                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.7910447761194029                                                                 
SCORE:                                                                             
0.7910447761194029                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7999999999999999                                                                 
SCORE:                                                                             
0.8085106382978723                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.7692307692307692                                                                 
SCORE:                                                                             
0.7999999999999999                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7737226277372262                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7301587301587301                                                                 
SCORE:                                                                             
0.7786259541984732                                                                 
SCORE:                                                                             
0.7878787878787878                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7878787878787878                                                                 
SCORE:                                                                             
0.7692307692307692                                                                 
SCORE:                                                                             
0.0                                                                                
SCORE:                                                                             
0.7499999999999999                                                                 
SCORE:                                                                             
0.8169014084507042                                                                 
SCORE:                                                                             
0.7910447761194029                                                                 
100%|██████████| 100/100 [11:24<00:00,  6.84s/trial, best loss: -0.8201438848920864]
{'colsample_bytree': 0.9999995803500363, 'eta': 0.1316102455832729, 'gamma': 1.6313395777817137, 'max_depth': 5.0, 'min_child_weight': 3.0, 'n_estimators': 100.0, 'reg_alpha': 47.0, 'reg_lambda': 0.4901343161108276}
#plotting feature space and f1-scores for the different trials
parameters = space.keys()
cols = len(parameters)f, axes = plt.subplots(nrows=1, ncols=cols, figsize=(20,5))
cmap = plt.cm.jet
for i, val in enumerate(parameters):xs = np.array([t['misc']['vals'][val] for t in trials.trials]).ravel()ys = [-t['result']['loss'] for t in trials.trials]xs, ys = zip(*sorted(zip(xs, ys)))axes[i].scatter(xs, ys, s=20, linewidth=0.01, alpha=0.25, c=cmap(float(i)/len(parameters)))axes[i].set_title(val)axes[i].grid()

在这里插入图片描述

#printing best model parameters
print(best)
{'colsample_bytree': 0.9999995803500363, 'eta': 0.1316102455832729, 'gamma': 1.6313395777817137, 'max_depth': 5.0, 'min_child_weight': 3.0, 'n_estimators': 100.0, 'reg_alpha': 47.0, 'reg_lambda': 0.4901343161108276}

5. Model Test and Evaluation

本节将探讨并可视化模型在测试数据上的表现。

#initializing XGBoost Classifier with best model parameters
best_clf = xgb.XGBClassifier(n_estimators = int(best['n_estimators']), eta = best['eta'], max_depth = int(best['max_depth']), gamma = best['gamma'], reg_alpha = int(best['reg_alpha']), min_child_weight = best['min_child_weight'], colsample_bytree = best['colsample_bytree'], nthread = -1)
#fitting XGBoost Classifier with best model parameters to training data
best_clf.fit(X_train, Y_train)
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=0.9999995803500363,eta=0.1316102455832729, gamma=1.6313395777817137,learning_rate=0.1, max_delta_step=0, max_depth=5,min_child_weight=3.0, missing=None, n_estimators=100, n_jobs=1,nthread=-1, objective='binary:logistic', random_state=0,reg_alpha=47, reg_lambda=1, scale_pos_weight=1, seed=None,silent=None, subsample=1, verbosity=1)
#using the model to predict on the test set
Y_pred = best_clf.predict(X_test)
#printing f1 score of test set predictions
print('The f1-score on the test data is: {0:.2f}'.format(f1_score(Y_test, Y_pred)))
The f1-score on the test data is: 0.74
#creating a confusion matrix and labels
cm = confusion_matrix(Y_test, Y_pred)
labels = ['Normal', 'Fraud']
#plotting the confusion matrix
sns.heatmap(cm, annot = True, xticklabels = labels, yticklabels = labels, fmt = 'd')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix for Credit Card Fraud Detection')
Text(0.5, 1.0, 'Confusion Matrix for Credit Card Fraud Detection')

在这里插入图片描述

#printing classification report
print(classification_report(Y_test, Y_pred))
              precision    recall  f1-score   support0       1.00      1.00      1.00     566511       0.87      0.64      0.74        95accuracy                           1.00     56746macro avg       0.94      0.82      0.87     56746
weighted avg       1.00      1.00      1.00     56746
Y_score = best_clf.predict_proba(X_test)[:, 1]
average_precision = average_precision_score(Y_test, Y_score)
fig = plot_precision_recall_curve(best_clf, X_test, Y_test)
fig.ax_.set_title('Precision-Recall Curve: AP={0:.2f}'.format(average_precision))
Text(0.5, 1.0, 'Precision-Recall Curve: AP=0.74')

在这里插入图片描述

6. Feature Importances

本节将介绍两种算法,一种在 XGBoost 中,一种在 SHAP 中,用于可视化特征重要性。 不幸的是,由于该数据集的特征是使用主成分分析(PCA)进行编码的,因此我们无法凭直觉得出模型如何从实际角度预测正常交易和欺诈交易的结论。

#extracting the booster from model
booster = best_clf.get_booster()# scoring features based on information gain
importance = booster.get_score(importance_type = "gain")#rounding importances to 2 decimal places
for key in importance.keys():importance[key] = round(importance[key],2)# plotting feature importances
ax = xgb.plot_importance(importance, importance_type='gain', show_values=True)
plt.title('Feature Importances (Gain)')
plt.show()

在这里插入图片描述

#obtaining SHAP values for XGBoost Model
explainer = shap.TreeExplainer(best_clf)
shap_values = explainer.shap_values(X_train)
#plotting SHAP Values of Feature Importances
shap.summary_plot(shap_values, X_train)

在这里插入图片描述

这篇关于SHAP(六):使用 XGBoost 和 HyperOpt 进行信用卡欺诈检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448214

相关文章

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P