混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)

2023-12-02 22:20

本文主要是介绍混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)

  • 前言
  • 一、自治非哈密顿系统的构造、动态特性分析
    • 1.相关理论基础
    • 2.两个四维自治非哈密顿系统
    • 3.数值分析
  • python代码

前言

续接混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.4)

一、自治非哈密顿系统的构造、动态特性分析

1.相关理论基础

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.两个四维自治非哈密顿系统

本节的主要贡献是提出具有如下特点的两个新四维自治非线性联系系统:
第一,提出的系统都是非哈密顿能量保守系统。这可由存在的哈密顿能量函 数与李雅普诺夫指数和为零来说明。
第二,其中一个系统不存在逆时间对称性。
第三,提出的系统都存在两种类型的曲线平衡点。
第四,系统中存在的拟周期运动和混沌运动存在于一个超球面上。
通常一个四维非线性动力学系统可用如下一阶微分方程组来表示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.数值分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python代码

import numpy as np
from scipy.integrate import odeint
import matplotlib.pylab as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif'] = ['Times new roman']  # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题def dmove(Point, t, sets):a, b = setsx, y, z, w = Pointreturn np.array([a * y * w,x * z,-x * y + b * w,-a * x * y - b * z])t = np.arange(0, 200, 0.01)  # 时间序列 总共有 100/0.01=10000 个点
par_a = 2
par_b = 2par = [par_a, par_b]
P = odeint(dmove, (1, -1, 1, -1), t, args=(par,))plt.figure()
plt.plot(P[:, 0], lw=2)
plt.plot(P[:, 1], lw=2)
plt.plot(P[:, 2], lw=2)
plt.xlabel("t", fontsize=15)
plt.ylabel("x,y,z", fontsize=15)plt.figure()
plt.plot(P[:, 0], P[:, 1], lw=1.5, c="b")
plt.xlabel("x", fontsize=12)
plt.ylabel("y", fontsize=12)
plt.figure()
plt.plot(P[:, 0], P[:, 2], lw=1.5, c="b")
plt.xlabel("x", fontsize=12)
plt.ylabel("z", fontsize=12)
plt.figure()
plt.plot(P[:, 2], P[:, 3], lw=1.5, c="b")
plt.xlabel("z", fontsize=12)
plt.ylabel("w", fontsize=12)
plt.show()

这篇关于混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/447044

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

SpringBoot3使用Jasypt实现加密配置文件

《SpringBoot3使用Jasypt实现加密配置文件》这篇文章主要为大家详细介绍了SpringBoot3如何使用Jasypt实现加密配置文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... 目录一. 使用步骤1. 添加依赖2.配置加密密码3. 加密敏感信息4. 将加密信息存储到配置文件中5

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库