数字图像处理(实践篇)十七 Shi-Tomasi 角点检测

2023-12-02 17:04

本文主要是介绍数字图像处理(实践篇)十七 Shi-Tomasi 角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 涉及的函数

二 实践


在使用OpenCV之前,需要先安装相关的库和依赖项,命令如下所示:

# 安装OpenCV的基础版pip install opencv-python# 安装OpenCV的扩展版pip install opencv-contrib-python

一 涉及的函数

OpenCV 提供了cv2.goodFeaturesToTrack()函数,来获取图像中前 N 个最好的角点。

cv2.goodFeaturesToTrack()函数的原型如下所示

corners=cv.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]])

输入:

image:输入灰度图像,float32类型。

maxCorners:返回角点的最大数目。

注意:值为0表示没有设置最大值限制,返回所有检测到的角点。

qualityLevel:表示可接受角点的最低质量水平。

minDistance:角点之间最小欧式距离,忽略小于这个距离的角点。

mask:可选的感兴趣区域,指定想要检测角点的区域。

blockSize:角点检测的邻域大小。

useHarrisDetector:选择是否采用Harris角点检测,默认是false.值为false的时候,使用的是Shi Tomasi算法

k:Harris角点检测时使用的参数。

返回:

corners输出为角点坐标。

二 实践

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):img = cv2.imread(img_path)im1 = img.copy()im2 = img.copy()gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)# 返回的最大角点数是40,最低质量水平为0.01,角点之间最小欧式距离为10,useHarrisDetector为默认值false,使用的是Shi-Tomasi算法。corners = cv2.goodFeaturesToTrack(gray, 40, 0.01, 10)corners = np.intp(corners)for i in corners:x, y = i.ravel()cv2.circle(im1, (x, y), 3, (255, 255, 0), -1)# 返回的最大角点数是40,最低质量水平为0.01,角点之间最小欧式距离为10,useHarrisDetector为True,使用的是harris算法。corners_harris = cv2.goodFeaturesToTrack(gray, 40, 0.01, 10, useHarrisDetector=True)corners_harris = np.intp(corners_harris)for i in corners_harris:x, y = i.ravel()cv2.circle(im2, (x, y), 3, (255, 255, 0), -1)fig = plt.figure(figsize=(10, 10))img = dealImg(img)im1 = dealImg(im1)im2 = dealImg(im2)titles = ["im", " Shi-Tomasi", "harris"]images = [img, im1, im2]for i in range(3):plt.subplot(1, 3, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])#plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("corner.jpg")pass
  • 效果图

Harris 和 Shi-Tomasi 都是基于梯度计算的角点检测方法。从上图结果中可以看出,Shi-Tomasi 的检测的效果要好一些。但是,基于梯度的检测方法有计算复杂度高等缺点。如果有提高检测速度的需求的话,可以考虑FAST角点检测算法。FAST角点检测算法原理简单,实时性也较强。

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

数字图像处理(实践篇)十六 基于分水岭算法的图像分割
 

这篇关于数字图像处理(实践篇)十七 Shi-Tomasi 角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446130

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

Prometheus与Grafana在DevOps中的应用与最佳实践

Prometheus 与 Grafana 在 DevOps 中的应用与最佳实践 随着 DevOps 文化和实践的普及,监控和可视化工具已成为 DevOps 工具链中不可或缺的部分。Prometheus 和 Grafana 是其中最受欢迎的开源监控解决方案之一,它们的结合能够为系统和应用程序提供全面的监控、告警和可视化展示。本篇文章将详细探讨 Prometheus 和 Grafana 在 DevO

springboot整合swagger2之最佳实践

来源:https://blog.lqdev.cn/2018/07/21/springboot/chapter-ten/ Swagger是一款RESTful接口的文档在线自动生成、功能测试功能框架。 一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务,加上swagger-ui,可以有很好的呈现。 SpringBoot集成 pom <!--swagge

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

vue2实践:el-table实现由用户自己控制行数的动态表格

需求 项目中需要提供一个动态表单,如图: 当我点击添加时,便添加一行;点击右边的删除时,便删除这一行。 至少要有一行数据,但是没有上限。 思路 这种每一行的数据固定,但是不定行数的,很容易想到使用el-table来实现,它可以循环读取:data所绑定的数组,来生成行数据,不同的是: 1、table里面的每一个cell,需要放置一个input来支持用户编辑。 2、最后一列放置两个b