基于bert模型的文本分类研究:“Predict the Happiness”挑战

2023-12-02 11:08

本文主要是介绍基于bert模型的文本分类研究:“Predict the Happiness”挑战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

在2018年10月,Google发布了新的语言表示模型BERT-“Bidirectional Encoder Representations from Transformers”。根据他们的论文所言,在文本分类、实体识别、问答系统等广泛的自然语言处理任务上取得了最新的成果。

2017年12月,参加了Hackerreath的一个挑战“Predict the Happiness”。在这个挑战中,我为这个文本分类问题(Predict the Happiness)构建了一个多层全连接神经网络通过提交的测试数据,我可以得到87.8%的准确率,排名是66。

在互联网上围绕BERT进行了大量的讨论之后,我选择将BERT应用到同一个Challenge中,以证明调整BERT模型是否能将我带到这个挑战的更好排名。

2. Bert安装与预训练模型

  • 将BERT Github项目Copy到自己的机器上:

git clone https://github.com/google-research/bert.git
  • 直接下载预训练的Bert模型

Google提供了四个预训练模型:

  • BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
  • BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
  • BERT-Base, Cased: 12-layer, 768-hidden, 12-heads , 110M parameters
  • BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters

本文下载了BERT-Base, Cased第一个进行文本分类实验。这里,我们需要以符合bert模型的格式准备文本数据。Google规定了数据的格式:

对于train.tsv or dev.tsv:

  • 每行需要一个ID
  • 每行需要一个整数值作为标签 ( 0,1,2,3 etc)
  • 一列完全相同的字母
  • 要分类的文本示例

对于test.tsv:

  • 每行需要一个ID
  • 想要测试的文本示例

下面的python代码片段将读取hackerreath训练数据(train.csv),并根据bert模型机型数据准备:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from pandas import DataFramele = LabelEncoder()df = pd.read_csv("data/train.csv")# Creating train and dev dataframes according to BERT
df_bert = pd.DataFrame({'user_id':df['User_ID'],'label':le.fit_transform(df['Is_Response']),'alpha':['a']*df.shape[0],'text':df['Description'].replace(r'\n',' ',regex=True)})df_bert_train, df_bert_dev = train_test_split(df_bert, test_size=0.01)# Creating test dataframe according to BERT
df_test = pd.read_csv("data/test.csv")
df_bert_test = pd.DataFrame({'User_ID':df_test['User_ID'],'text':df_test['Description'].replace(r'\n',' ',regex=True)})# Saving dataframes to .tsv format as required by BERT
df_bert_train.to_csv('data/train.tsv', sep='\t', index=False, header=False)
df_bert_dev.to_csv('data/dev.tsv', sep='\t', index=False, header=False)
df_bert_test.to_csv('data/test.tsv', sep='\t', index=False, header=True)

原始训练数据格式如下:

符合Bert的训练数据格式如下:

3. 使用BERT预训练模型进行模型训练

进行训练前的检查(太重要了):

  • 所有的.tsv文件都在“data”的文件夹中
  • 创建文件夹“bert_output”,保存经过微调的模型,并以“test_results.tsv”的名称生成测试结果
  • 检查是否下载了“cased_l-12_h-768_a-12”中的预先训练的bert模型到当前目录

  • 确保命令中的路径是相对路径(以“/”开头)

在终端上运行以下命令:

python run_classifier.py 
--task_name=cola 
--do_train=true 
--do_eval=true 
--do_predict=true 
--data_dir=./data/ 
--vocab_file=./cased_L-12_H-768_A-12/vocab.txt 
--bert_config_file=./cased_L-12_H-768_A-12/bert_config.json 
--init_checkpoint=./cased_L-12_H-768_A-12/bert_model.ckpt 
--max_seq_length=400 
--train_batch_size=8 
--learning_rate=2e-5 
--num_train_epochs=3.0 
--output_dir=./bert_output/ 
--do_lower_case=False

在输出目录中生成“test_results.tsv”,作为对测试数据集的预测的结果它包含所有类在列中的预测概率值。

4. 提交结果

下面的python代码将结果从BERT模型转换为.csv格式,以便提交给hackerreath Challenge:

df_results = pd.read_csv("bert_output/test_results.tsv",sep="\t",header=None)
df_results_csv = pd.DataFrame({'User_ID':df_test['User_ID'],'Is_Response':df_results.idxmax(axis=1)})# Replacing index with string as required for submission
df_results_csv['Is_Response'].replace(0, 'happy',inplace=True)
df_results_csv['Is_Response'].replace(1, 'not_happy',inplace=True)# writing into .csv
df_results_csv.to_csv('data/result.csv',sep=",",index=None)

下图显示了将概率值转换为提交结果的过程:

BERT的威力就是可以将排名从66升到第4!!!

5. 总结

  • Bert的训练环节:

该模型使用两个新的无监督预测任务进行预训练:

BERT使用了一种简单的方法:MASK输入中15%的单词,通过一个深度Bidirectional Transformer encoder运行整个序列,然后只预测MASK的单词例如:

Input: the man went to the [MASK1] . he bought a [MASK2] of milk.
Labels: [MASK1] = store; [MASK2] = gallon

为了学习句子之间的关系,BERT还训练了一个可以从任何单语语料库生成的简单任务:给定两个句子a和b,预测b是a之后的实际下一个句子,还是只是语料库中的一个随机句子。

Sentence A: the man went to the store.
Sentence B: he bought a gallon of milk.
Label: IsNextSentenceSentence A: the man went to the store.
Sentence B: penguins are flightless.
Label: NotNextSentence
  • 根据模型体系结构的规模,有两个预先训练的模型,即BASE和LARGE。
BERT BASE:Number of Layers =12No. of hidden nodes = 768No. of Attention heads =12Total Parameters = 110MBERT LARGE:Number of Layers =24,No. of hidden nodes = 1024No. of Attention heads =16Total Parameters = 340M

 

这篇关于基于bert模型的文本分类研究:“Predict the Happiness”挑战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445105

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言