【平价数据】SimGAN:活用合成数据和无监督数据

2023-12-01 21:48

本文主要是介绍【平价数据】SimGAN:活用合成数据和无监督数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shrivastava, Ashish, et al. “Learning from simulated and unsupervised images through adversarial training.” IEEE Conference on Computer Vision and Pattern Recognition.2017

概述

本文是Apple在机器学习领域的首秀,同时也是CVPR 2017的两篇Best Paper之一。

在使用深度学习结局实际问题时,我们常常遇到以下的局面:

类别品质标记数量
监督数据真实
无监督数据真实
合成数据不真实

本文举了两个例子:视线方向识别和手势识别。

  • 两种问题的标定都十分困难,使得监督数据昂贵而稀少。
  • 可以用CG模型合成数据。这些数据的视线方向和手关节位置已知,但画面不够真实。

本文利用GAN思想,通过无监督数据提升合成数据的质量,同时不改变合成数据的标记。之后使用优化过的合成数据训练模型。

方法

系统框架

类似GAN网络,本文系统中包含两个核心模块

  • 改善器 R R R:输入合成数据,输出改善结果。
  • 鉴别器 D D D:判断输入是真实数据还是经过改善的合成数据。

这里写图片描述

注意,训练的最终目的是生成改善后的合成数据。而不是改善器或者鉴别器本身。

优化

相关的代价有三种

  • 代价1:鉴别器识别改善图像的错误率。
  • 代价2:鉴别器识别真实图像的错误率。
  • 代价3:改善图像和原始图像的逐像素差

其中,代价3保证改善图像和原始图像的类标相同。例如,保证手势姿态不变,保证视线方向不变。除了直接比较像素,还可以提取图像特征之后在做差。

在每一轮迭代中:

  • 最大化代价1,最小化代价3,优化改善器 R R R的参数。共执行 K r K_r Kr次SGD。
  • 最小化代价1,最小化代价2,优化鉴别器 D D D的参数。共执行 K d K_d Kd次SGD。

经过若干次迭代得到的改善器 R R R,可以将合成样本加工成具有以下两个性质的样本:

  • 品质和真实图像难以分辨
  • 保持合成样本原有类标不变

改进:局部损失

问题

随着迭代进展,鉴别器 D D D可能过分利用某些错误的全局特征进行分类,进而使得改善图像出现不自然的artifact。

举例:真实图像中可能只包含几个固定视线方向的样本,但合成图像的视线方向则均匀而连续。于是鉴别器“剑走偏锋”地以视线方向作为真假样本的判别标准。1

解决

本文在训练鉴别器 D D D时,将图像分割成 w × h w\times h w×h的小块分别输入;在利用 D D D进行分类时,以各个小块的分类结果只和作为该图像的结果。
除了避免全局信息引入artifact之外,这种方法还能够增加训练样本的数量。

改进:历史信息

问题

随着每一次迭代,改善器 R R R输出的图像是逐步变化的。相应地,鉴别器能够有效辨识的图像也集中在最近的改善器输出中。这导致两个问题:

  • 对抗训练不收敛2
  • 改善器 R R R会重新引入之前出现过、但已经被鉴别器 D D D忘记的artifact

解决

本文设置一个buffer来储存迭代中生成的改善图像。

  • 在每个大小为 b b b的mini-batch中,有一半数据来源于这个buffer,另一半来源于当前改善器 R R R的输出。
  • 完成迭代后,用当前改善器的输出替换 b / 2 b/2 b/2个buffer中的样本。

实验

视线方向估计

数据

真实数据:214K的MPIIGaze数据库
合成数据:1.2M使用UnityEyes生成图像,使用单一渲染环境

由于合成图像和真是图像在颜色上差别较大,在计算代价3时使用RGB三通道平均值之差代替逐像素差。

由于视线方向估计是在灰度图上进行,使用灰度代价即可。

结果

改善图像(中)能够保持原始图像(左)的视线方向,同时其品质接近真实图像(右),即使真人也难以分辨。
这里写图片描述

使用改善图像训练的分类器,效果大大超出使用原始合成图像训练的分类器。
这里写图片描述
与state of the art相比,错误率也有明显降低。
这里写图片描述

手势识别

数据

真实数据:NYU hand pose。70K训练,8K测试。未标定。裁剪缩放为224×224深度图像。
合成数据:数量未提及。包含14个关节标定结果。

结果

改善数据能够逼真模拟真实数据中的噪声。
这里写图片描述

使用改善数据训练的分类器指标具有明显优势。
这里写图片描述


  1. 原文未详述,此处为个人理解。 ↩︎

  2. 原因未详述 ↩︎

这篇关于【平价数据】SimGAN:活用合成数据和无监督数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442816

相关文章

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA