人脸检测:《S3FD: Single Shot Scale-invariant Face Detector》论文详解

本文主要是介绍人脸检测:《S3FD: Single Shot Scale-invariant Face Detector》论文详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近项目中在做人脸检测识别。现大致对人脸检测做一个总结归纳。

文章链接:《S3FD: Single Shot Scale-invariant Face Detector》

GITHUB :https://github.com/sfzhang15/SFD

This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S3FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces。

Making contributions in the following three aspects:

1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle;

2) improving the recall rate of small faces by a scale compensation anchor matching strategy;

3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-theart detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.

总而言之

这篇可以看作是对SSD的改进与完善,速度较慢(36FPS with Titan X & VGA)。

对小脸检测效果较好,例如下图:

在1000个人脸中找到了853张脸。

并且在其他数据集上的召回率比起其他算法也要好一些。

其他的人脸检测算法速度和性能比较可以参照另一篇文章:https://zhuanlan.zhihu.com/p/32702868

一、方法介绍

在近几年里,CNN网络在图像分类到目标检测都取得了显著的成功。这同样激励着人脸检测。

因此该文作者从目标检测的方法中,改进了anchor-based的通用检测框架并提出了新的人脸检测方法。

In this paper, inspired by the RPN in Faster RCNN and the multi-scale mechanism in SSD, we develop a state-ofthe-art face detector with real-time speed.

原来的anchor-based是存在问题的。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • (a) 由于卷积网络的池化层,小尺度人脸最后拥有的特征太少;
  • (b) anchor的尺寸与感受野的尺寸互相不匹配,且都太大而不适宜小人脸;
  • (c) 离散尺度的anchor预测连续尺度的人脸,导致tiny face和outer face均不能获得足够多的匹配;
  • (d) 小的anchors在背景里进行匹配时会面临更多的负样本。

二、模型要点介绍

1.Scale-equitable framework

    这个框架是基于anchor-based检测框架,例如RPN和SSD。作者为了提高面部尺度的鲁棒性,开发了一个网络架构,其中包括各种anchor-associated层。 论文中的anchor-associated 网络层的步长 从 4到 128 以2倍方式递增,这样可以保证不同尺度的人脸都有足够的信息用于人脸检测,anchor尺寸从16->512

网路结构(看上图)包括以下几个部分:

1)(Base Convolutional Layers)基础卷积层:我们保持了VGG16的从conv1_1到pool5的所有层,并去掉所有的其他网络层。

2)(Extra Convolutional Layers) 额外卷积层:我们通过对他们的参数进行二次采样,并将VGG16的fc6和fc7层转换成卷积层,然后在它们后面添加额外的卷积层。这些层可以逐渐减小尺寸并形成多尺度特征图。

3)(Detection Convolutional Layers)检测卷积层:我们选择了conv3_3,conv4_3,conv5_3,conv_fc7,conv6_2和conv7_2层作为检测层。

4)(Normalization Layers)正则化层:与其他检测层相比,conv3_3,con4_3,con5_3具有不同的特征尺度。因为我们使用L2正则化将它们的Norm分别调整到10,8,和5,然后在反向传播期间学习尺度。

5)(Predicted Convolutional Layers)预测卷积层:每个检测层之后都是一个p×3×3×q的卷积层,其中p和q是输入和输出的通道数字,3×3是卷积核大小。对于每一个anchor,我们预测 4个坐标位置补偿, N_s 个分类概率,其中 conv3_3 检测层是N_s = N_m + 1 ,其他检测层 N_s =2。

6)(Multi-task Loss Layer)多任务损失层:我们对分类用softmax loss,对于位置回归使用smooth L1 loss。

Designing scales for anchors.

对于6个检测层,我们使用不同尺度的Square anchor。

上表说表示的网络之所以这么设计,主要考虑了以下两个因素:

1.Anchor的尺度应该比receptive field(RF)小。

理论上的感受野是指该范围内的任意输入都会影响到输出。但实际上,这种影响不是均匀的。因此中间的输入对输出影响越重,类似于一种高斯分布。如下图所示。

我们应当使得anchor的尺度与有效receptive field相匹配,有效receptive field如上图b蓝色圈圈所示。其中黑色框为理论receptive field。

**不同size的anchor应当具有相同的空间密度。

如上图(c)所示,anchor的size与stride的比例始终保持为4。 这也就意味着,即使在不同尺度上,滑动过一定百分比(占anchor大小的百分比)的像素,得到的anchor的数量是一致的。

2.Scale compensation anchor matching strategy

如上图所示,平均匹配到的anchor数量约为3,太少;与anchor size差距较远的人脸匹配成功的数量尤其少(tiny face + outer face)。为了改善这种状况,主要采取了下列两种手段:

  • (1)将原有的匹配阈值由0.5降到0.35,以此来增加更多的成功匹配。 (但该策略只能提高平均匹配数量,但不能改善tiny face和outer face。)
  • (2)选出所有IOU大于0.1得到anchor并进行排序,从中选TOP N。(N为平均成功匹配数量。)

处理后的效果如下(a):

3.Max-out bckground label

下表是一张640x640图片上所能产生的不同size的anchor的数量,显然尺寸小的anchor占了绝大比例,这也是false positive的主要来源。

对于conv3_3,由于采用了小的anchor,导致太多的人脸虚警(False positive)

这里背景太过复杂,将其分类一类太笼统了,于是我们将背景细分为多类,人脸作为一类。这样复杂的背景就可以被正确分类的概率就提升了。

为了去除这些虚警,我们对每个最小anchors,我们将背景分为了N_m类,在计数每个位置类别时,我们得到N_m类个背景的概率,然后选择一个概率最大的分数作为最终分数用于计算softmax loss。

4.Conclusion

本文介绍了一种新型的人脸检测方法,是通过解决anchor-based检测方法的随着物体变小而性能急剧下降的问题。该文分析了这个问题的背后原因,并提出了一种scale-equitable框架,其中包含了各种anchor-associated层和一系列合理的anchor尺度,以便很好地处理不同人脸尺度。此外,该文还提出了尺度补偿anchor匹配策略,以提高小脸的召回率和最大背景标签以减小人脸的误报率。

实验表明,该文的三项贡献使S3FD在所有常见的人脸检测基准测试中都具有最先进的性能,特别是对小脸的检测。在他们未来的工作中,打算进一步改进背景patch的分类策略。他们认为明确将背景类划分为若干子类是值得进一步研究的。

 

后续再对S3FD算法实际测试和重新训练。----未完

这篇关于人脸检测:《S3FD: Single Shot Scale-invariant Face Detector》论文详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/441430

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML