Hologres性能优化指南1:行存,列存,行列共存

2023-12-01 09:45

本文主要是介绍Hologres性能优化指南1:行存,列存,行列共存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Hologres中支持行存、列存和行列共存三种存储格式,不同的存储格式适用于不同的场景。
在建表时通过设置orientation属性指定表的存储格式:

BEGIN;
CREATE TABLE <table_name> (...);
call set_table_property('<table_name>', 'orientation', '[column | row | row,column]');
COMMIT;

存储模式使用建议:
在这里插入图片描述

列存:

技术原理:
如果表是列存,那么数据将会按照列的形式存储。列存默认使用ORC格式,采用各种类型的Encoding算法(如RLE、字典编码等)对数据进行编码,并且对编码后的数据应用主流压缩算法(如Snappy、 Zlib、 Zstd、 Lz4等)对数据进一步进行压缩,并结合Bitmap index、延迟物化等机制,提升数据的存储和查询效率。

系统会为每张表在底层存储一个主键索引文件,详情请参见主键Primary Key。列存表如果设置了主键PK,系统会自动生成一个Row Identifier(RID),用于快速定位整行数据,同时如果为查询的列设置合适的索引(如Distribution Key、Clustering Key等),那么就可以通过索引快速定位到数据所在的分片和文件,从而提升查询性能,因此列存的适用范围更广,通常用于OLAP查询的场景。
列存----OLAP场景
建表语法

begin;
create table public.tbl_col (
id text NOT NULL,
name text NOT NULL,
class text NOT NULL,
in_time TIMESTAMPTZ NOT NULL,
PRIMARY KEY (id)
);
call set_table_property('public.tbl_col', 'orientation', 'column');
call set_table_property('public.tbl_col', 'clustering_key', 'class');
call set_table_property('public.tbl_col', 'bitmap_columns', 'name');
call set_table_property('public.tbl_col', 'event_time_column', 'in_time');
commit;
select * from public.tbl_col where id ='3333';
select id, class,name from public.tbl_col where id < '3333' order by id;

**

行存:

如果Hologres的表设置的是行存,那么数据将会按照行存储。行存默认使用SST格式,数据按照Key有序分块压缩存储,并且通过Block Index、Bloom Filter等索引,以及后台Compaction机制对文件进行整理,优化点查查询效率。
(推荐)设置主键Primary Key
系统会为每张表在底层存储一个主键索引文件,详情请参见主键Primary Key。行存表设置了Primary Key(PK)的场景,系统会自动生成一个Row Identifier(RID),RID用于定位整行数据,同时系统也会将PK设置为Distribution Key和Clustering Key,这样就能快速定位到数据所在的Shard和文件,在基于主键查询的场景上,只需要扫描一个主键就能快速拿到所有列的全行数据,提升查询效率,
行存主要针对点查的使用场景;
不建议使用)设置的PK和Clustering Key不一致
但如果在建表时,设置表为行存表,且将PK和Clustering Key设置为不同的字段,查询时,系统会根据PK定位到Clustering Key和RID,再通过Clustering Key和RID快速定位到全行数据,相当于扫描了两次,有一定的性能牺牲,SQL示例如下。
综上:行存表非常适用于基于PK的点查场景,能够实现高QPS的点查。同时建表时建议只设置PK,系统会自动将PK设置为Distribution Key和Clustering Key,以提升查询性能。不建议将PK和Clustering Key设置为不同的字段,设置为不同的字段会有一定的性能牺牲。

行列共存:

在实际应用场景中,一张表可能用于主键点查,又用于OLAP查询,因此Hologres在V1.1版本支持了行列共存的存储格式。行列共存同时拥有行列和列存的能力,既支持高性能的基于PK点查,又支持OLAP分析。数据在底层存储时会存储两份,一份按照行存格式存储,一份按照列存格式存储,因此会带来更多的存储开销。

数据写入时,会同时写一份行存格式和写一份列存格式,只有两份数据都写完了才会返回成功,保证数据的原子性。

数据查询时,优化器会根据SQL,解析出对应的执行计划,执行引擎会根据执行计划判断走行存还是列存的查询效率更高,要求行列共存的表必须设置主键:

对于主键点查场景(如select * from tbl where pk=xxx语句)以及Fixed Plan加速SQL执行场景,优化器会默认走行存主键点查的路径。

对于非主键点查场景(如select * from tbl where col1=xx and col2=yyy语句),尤其是表的列很多,且查询结果需要展示很多列,行列共存针对该场景,优化器在生成执行计划时,会先读取列存表的数据,读取完成后根据列存键值Key查询行存表的数据,避免全表扫描,提升非主键查询性能。该场景能充分发挥行列共存的优势,提高数据的快速检索性能。

对于其他的普通查询,则会默认走列存。

因此行列共存表在通常查询场景,尤其是非主键点查场景,查询效率更好,

这篇关于Hologres性能优化指南1:行存,列存,行列共存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440669

相关文章

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis