[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion

2023-11-30 22:12

本文主要是介绍[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Installation(下载代码-装环境)

conda create -n bk-sdm python=3.8
conda activate bk-sdm
git clone https://github.com/Nota-NetsPresso/BK-SDM.git
cd BK-SDM
pip install -r requirements.txt
Note on the torch versions we've used
  • torch 1.13.1 for MS-COCO evaluation & DreamBooth finetuning on a single 24GB RTX3090
     

  • torch 2.0.1 for KD pretraining on a single 80GB A10
    火炬2.0.1在单个80GB A100上进行KD预训练

    • 如果A100上总批大小为256的预训练导致gpu内存不足,请检查torch版本并考虑升级到torch>2.0.0。
      我的版本也是torch2.0.1 单个A100(80G)理论上吃的下256batch

小的例子

PNDM采样器 50步去噪声

等效代码(仅修改SD-v1.4的U-Net,同时保留其文本编码器和图像解码器):

Distillation Pretraining

Our code was based on train_text_to_image.py of Diffusers 0.15.0.dev0. To access the latest version, use this link.
BK-SDM的diffusers版本0.15
我的diffusers版本比较高0.24.0

检测是否能够训练(先下载数据集get_laion_data.sh再运行代码kd_train_toy.sh)

1 一个玩具数据集(11K的img-txt对)下载到。

bash scripts/get_laion_data.sh preprocessed_11k

/data/laion_aes/preprocessed_11k (1.7GB in tar.gz;1.8GB数据文件夹)。
get_laion_data.sh

需要修改,实际就是下载这三个数据集,我自行下载

# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_11k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_212k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_2256k.tar.gz

我修改后下载文件名 https://... .../preprocessed_11k.tar.gz直接粘贴到网址里面也可以下载
wget $S3_URL -0 $FILe_PATH
$S3_URL 就是这个网址
$FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k

DATA_TYPE=$"preprocessed_11k"  # {preprocessed_11k, preprocessed_212k, preprocessed_2256k}
FILE_NAME="${DATA_TYPE}.tar.gz"DATA_DIR="./data/laion_aes/"
FILE_UNZIP_DIR="${DATA_DIR}${DATA_TYPE}"
FILE_PATH="${DATA_DIR}${FILE_NAME}"if [ "$DATA_TYPE" = "preprocessed_11k" ] || [ "$DATA_TYPE" = "preprocessed_212k" ]; thenecho "-> preprocessed_11k or 212k"S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/${FILE_NAME}"
elif [ "$DATA_TYPE" = "preprocessed_2256k" ]; thenS3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.25plus/${FILE_NAME}"
elseecho "Something wrong in data folder name"exit
fiwget $S3_URL -O $FILE_PATH
tar -xvzf $FILE_PATH -C $DATA_DIR
echo "downloaded to ${FILE_UNZIP_DIR}"

2 一个小脚本可以用来验证代码的可执行性,并找到与你的GPU匹配的批处理大小。
批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存。

bash scripts/kd_train_toy.sh
MODEL_NAME="CompVis/stable-diffusion-v1-4"
TRAIN_DATA_DIR="./data/laion_aes/preprocessed_11k" # please adjust it if needed
UNET_CONFIG_PATH="./src/unet_config"UNET_NAME="bk_small" # option: ["bk_base", "bk_small", "bk_tiny"]
OUTPUT_DIR="./results/toy_"$UNET_NAME # please adjust it if neededBATCH_SIZE=2
GRAD_ACCUMULATION=4StartTime=$(date +%s)CUDA_VISIBLE_DEVICES=1 accelerate launch src/kd_train_text_to_image.py \--pretrained_model_name_or_path $MODEL_NAME \--train_data_dir $TRAIN_DATA_DIR\--use_ema \--resolution 512 --center_crop --random_flip \--train_batch_size $BATCH_SIZE \--gradient_checkpointing \--mixed_precision="fp16" \--learning_rate 5e-05 \--max_grad_norm 1 \--lr_scheduler="constant" --lr_warmup_steps=0 \--report_to="all" \--max_train_steps=20 \--seed 1234 \--gradient_accumulation_steps $GRAD_ACCUMULATION \--checkpointing_steps 5 \--valid_steps 5 \--lambda_sd 1.0 --lambda_kd_output 1.0 --lambda_kd_feat 1.0 \--use_copy_weight_from_teacher \--unet_config_path $UNET_CONFIG_PATH --unet_config_name $UNET_NAME \--output_dir $OUTPUT_DIREndTime=$(date +%s)
echo "** KD training takes $(($EndTime - $StartTime)) seconds."

单GPU训练BK-SDM{Base, Small, Tiny}-0.22M数据训练
 

bash scripts/get_laion_data.sh preprocessed_212k
bash scripts/kd_train.sh

1 下载数据集preprocessed_212k
2 训练kd_train.sh
(256batch 训练BD-SM-Base 50K轮次需要300hours/53G单卡)
(64batch 训练BD-SM-Base 50K轮次需要60hours/28G单卡) 不理解?
 

单GPU训练BK-SDM{Base, Small, Tiny}-2.3M数据训练

这篇关于[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438740

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时