如何避免回表查询?什么是索引覆盖? | 1分钟MySQL优化系列

2023-11-30 14:38

本文主要是介绍如何避免回表查询?什么是索引覆盖? | 1分钟MySQL优化系列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《迅猛定位低效SQL?》留了一个尾巴:

select id,name where name='shenjian'

select id,name,sex where name='shenjian'

多查询了一个属性,为何检索过程完全不同?

 

什么是回表查询?

什么是索引覆盖?

如何实现索引覆盖?

哪些场景,可以利用索引覆盖来优化SQL?

 

这些,这是今天要分享的内容。

画外音:本文试验基于MySQL5.6-InnoDB。

 

一、什么是回表查询?

 

这先要从InnoDB的索引实现说起,InnoDB有两大类索引:

  • 聚集索引(clustered index)

  • 普通索引(secondary index)

 

InnoDB聚集索引和普通索引有什么差异?

InnoDB聚集索引的叶子节点存储行记录,因此, InnoDB必须要有,且只有一个聚集索引:

(1)如果表定义了PK,则PK就是聚集索引;

(2)如果表没有定义PK,则第一个not NULL unique列是聚集索引;

(3)否则,InnoDB会创建一个隐藏的row-id作为聚集索引;

画外音:所以PK查询非常快,直接定位行记录。

 

InnoDB普通索引的叶子节点存储主键值。

画外音:注意,不是存储行记录头指针,MyISAM的索引叶子节点存储记录指针。

 

举个栗子,不妨设有表:

t(id PK, name KEY, sex, flag);

画外音:id是聚集索引,name是普通索引。

 

表中有四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B

两个B+树索引分别如上图:

(1)id为PK,聚集索引,叶子节点存储行记录;

(2)name为KEY,普通索引,叶子节点存储PK值,即id;

 

既然从普通索引无法直接定位行记录,那普通索引的查询过程是怎么样的呢?

通常情况下,需要扫码两遍索引树。

 

例如:

select * from t where name='lisi';

是如何执行的呢?

粉红色路径,需要扫码两遍索引树:

(1)先通过普通索引定位到主键值id=5;

(2)在通过聚集索引定位到行记录;

 

这就是所谓的回表查询,先定位主键值,再定位行记录,它的性能较扫一遍索引树更低。

 

二、什么是索引覆盖(Covering index)

额,楼主并没有在MySQL的官网找到这个概念。

画外音:治学严谨吧?

 

借用一下SQL-Server官网的说法。

MySQL官网,类似的说法出现在explain查询计划优化章节,即explain的输出结果Extra字段为Using index时,能够触发索引覆盖。

 

不管是SQL-Server官网,还是MySQL官网,都表达了:只需要在一棵索引树上就能获取SQL所需的所有列数据,无需回表,速度更快。

 

三、如何实现索引覆盖?

常见的方法是:将被查询的字段,建立到联合索引里去。

 

仍是《迅猛定位低效SQL?》中的例子:

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name)

)engine=innodb;

 

第一个SQL语句:

select id,name from user where name='shenjian';

能够命中name索引,索引叶子节点存储了主键id,通过name的索引树即可获取id和name,无需回表,符合索引覆盖,效率较高。

画外音,Extra:Using index

 

第二个SQL语句:                     

select id,name,sex from user where name='shenjian';

能够命中name索引,索引叶子节点存储了主键id,但sex字段必须回表查询才能获取到,不符合索引覆盖,需要再次通过id值扫码聚集索引获取sex字段,效率会降低。

画外音,Extra:Using index condition

如果把(name)单列索引升级为联合索引(name, sex)就不同了。

create table user (

id int primary key,

name varchar(20),

sex varchar(5),

index(name, sex)

)engine=innodb;

可以看到:

select id,name ... where name='shenjian';

select id,name,sex ... where name='shenjian';

都能够命中索引覆盖,无需回表。

画外音,Extra:Using index

四、哪些场景可以利用索引覆盖来优化SQL?

场景1:全表count查询优化

原表为:

user(PK id, name, sex);

 

直接:

select count(name) from user;

不能利用索引覆盖。

 

添加索引:

alter table user add key(name);

就能够利用索引覆盖提效。

 

场景2:列查询回表优化

select id,name,sex ... where name='shenjian';

这个例子不再赘述,将单列索引(name)升级为联合索引(name, sex),即可避免回表。

 

场景3:分页查询

select id,name,sex ... order by name limit 500,100;

将单列索引(name)升级为联合索引(name, sex),也可以避免回表。

 

InnoDB聚集索引普通索引回表索引覆盖,希望这1分钟大家有收获。

 

提示,如果你不清楚explain结果Extra字段为Using index的含义,请阅读前序文章:《如何利用工具,迅猛定位低效SQL?》

架构师之路-分享可落地技术

相关推荐

《缓冲池(buffer pool),这次彻底懂了!》

《写缓冲(change buffer),这次彻底懂了!》

《数据库索引,到底是什么做的?》干货

这篇关于如何避免回表查询?什么是索引覆盖? | 1分钟MySQL优化系列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437408

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来