【Python基础绘图】自定义函数,一键标注相关性热力图的显著性

本文主要是介绍【Python基础绘图】自定义函数,一键标注相关性热力图的显著性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关性热力图标自动注显著性

在这里插入图片描述

01 引言

很早之前其实就写过一篇博客【python相关性热力图自动标记显著性】介绍如何在相关性热力图上自动标注显著性,不过收到好多同学私信问我数据源是啥样的,怎么计算的啊等等问题。所以今天打算重新写篇,并附上样例数据供大家参考学习。

02 读取数据 :

这次借助seaborn自带数据集的数据给大家来做演示,这边请忽略数据是否适用pearson相关性分析哈,实在是样例数据不太好找。你们自己整理数据,就整理成每列表示一个变量,这样就可以了。

df = sns.load_dataset('titanic')
print(df)

在这里插入图片描述

03计算相关性显著性:

r_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[0])
print(r_matrix)
p_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[1])
print(p_matrix)

在这里插入图片描述

04可视化

fig,ax = plt.subplots(figsize=(8,6))
mask = np.tril(np.ones(r_matrix.values.shape, dtype=int))
mask = np.where(mask==1,0,1)
print(mask)
im1 = sns.heatmap(r_matrix,annot=True,cmap="RdBu_r"
, mask=mask#构造mask,去除重复数据显示
,vmax=1,vmin=-1
, fmt='.2f',ax = ax
, annot_kws={"color": "k"}
)
plt.show()

在这里插入图片描述

05标注显著性

widthx = 0
widthy = -0.15for m in ax.get_xticks():for n in ax.get_yticks():pv = (p_matrix.values[int(m),int(n)])if mask[int(m),int(n)]<1.:if  pv< 0.05 and pv>= 0.01:ax.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')if  pv< 0.01 and pv>= 0.001:ax.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')if  pv< 0.001:ax.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')

在这里插入图片描述

完整代码(封装函数)

# -*- encoding: utf-8 -*-
'''
@File    :   相关性.py
@Time    :   2023/04/22 20:43:25
@Author  :   HMX
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''# here put the import lib
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
import pandas as pddef plot_p(df,pngpath,x=8,y=6,widthx = 0, widthy = -0.15):'''df:dataframe类型的数据pngpath:输出图片的路径x,y:图表的长宽width,widthy:调节显著性标记点距离网格中心点的位移,一般默认就行,如发生与相关性系数有重叠或者遮挡的情况时可以手动调整'''# 计算相关性r_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[0])# print(r_matrix)# 计算显著性p_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[1])# print(p_matrix)# 可视化fig,ax = plt.subplots(figsize=(x,y))# 构造maskmask = np.tril(np.ones(r_matrix.values.shape, dtype=int))mask = np.where(mask==1,0,1)# 可视化相关性im1 = sns.heatmap(r_matrix,annot=True,cmap="RdBu_r", mask=mask#构造mask,去除重复数据显示,vmax=1,vmin=-1, fmt='.2f',ax = ax, annot_kws={"color": "k"})# 标注显著性for m in ax.get_xticks():for n in ax.get_yticks():pv = (p_matrix.values[int(m),int(n)])if mask[int(m),int(n)]<1.:if  pv< 0.05 and pv>= 0.01:ax.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')if  pv< 0.01 and pv>= 0.001:ax.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')if  pv< 0.001:ax.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')plt.tight_layout()plt.savefig(pngpath,dpi = 600)if __name__ == '__main__':df = sns.load_dataset('titanic')print(df)pngpath = r'D:\ForestMeteorology\Study\相关性\GZH.png'plot_p(df,pngpath)plt.show()

热力图的其他设置请参考seaborn官网。
以上就是本期推文的全部内容了,如果对你有帮助的话,请‘点赞’、‘收藏’,‘关注’,你们的支持是我更新的动力。

这篇关于【Python基础绘图】自定义函数,一键标注相关性热力图的显著性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435435

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函