【Python基础绘图】自定义函数,一键标注相关性热力图的显著性

本文主要是介绍【Python基础绘图】自定义函数,一键标注相关性热力图的显著性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关性热力图标自动注显著性

在这里插入图片描述

01 引言

很早之前其实就写过一篇博客【python相关性热力图自动标记显著性】介绍如何在相关性热力图上自动标注显著性,不过收到好多同学私信问我数据源是啥样的,怎么计算的啊等等问题。所以今天打算重新写篇,并附上样例数据供大家参考学习。

02 读取数据 :

这次借助seaborn自带数据集的数据给大家来做演示,这边请忽略数据是否适用pearson相关性分析哈,实在是样例数据不太好找。你们自己整理数据,就整理成每列表示一个变量,这样就可以了。

df = sns.load_dataset('titanic')
print(df)

在这里插入图片描述

03计算相关性显著性:

r_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[0])
print(r_matrix)
p_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[1])
print(p_matrix)

在这里插入图片描述

04可视化

fig,ax = plt.subplots(figsize=(8,6))
mask = np.tril(np.ones(r_matrix.values.shape, dtype=int))
mask = np.where(mask==1,0,1)
print(mask)
im1 = sns.heatmap(r_matrix,annot=True,cmap="RdBu_r"
, mask=mask#构造mask,去除重复数据显示
,vmax=1,vmin=-1
, fmt='.2f',ax = ax
, annot_kws={"color": "k"}
)
plt.show()

在这里插入图片描述

05标注显著性

widthx = 0
widthy = -0.15for m in ax.get_xticks():for n in ax.get_yticks():pv = (p_matrix.values[int(m),int(n)])if mask[int(m),int(n)]<1.:if  pv< 0.05 and pv>= 0.01:ax.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')if  pv< 0.01 and pv>= 0.001:ax.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')if  pv< 0.001:ax.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')

在这里插入图片描述

完整代码(封装函数)

# -*- encoding: utf-8 -*-
'''
@File    :   相关性.py
@Time    :   2023/04/22 20:43:25
@Author  :   HMX
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''# here put the import lib
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
import pandas as pddef plot_p(df,pngpath,x=8,y=6,widthx = 0, widthy = -0.15):'''df:dataframe类型的数据pngpath:输出图片的路径x,y:图表的长宽width,widthy:调节显著性标记点距离网格中心点的位移,一般默认就行,如发生与相关性系数有重叠或者遮挡的情况时可以手动调整'''# 计算相关性r_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[0])# print(r_matrix)# 计算显著性p_matrix = df.corr(method=lambda x, y: pearsonr(x, y)[1])# print(p_matrix)# 可视化fig,ax = plt.subplots(figsize=(x,y))# 构造maskmask = np.tril(np.ones(r_matrix.values.shape, dtype=int))mask = np.where(mask==1,0,1)# 可视化相关性im1 = sns.heatmap(r_matrix,annot=True,cmap="RdBu_r", mask=mask#构造mask,去除重复数据显示,vmax=1,vmin=-1, fmt='.2f',ax = ax, annot_kws={"color": "k"})# 标注显著性for m in ax.get_xticks():for n in ax.get_yticks():pv = (p_matrix.values[int(m),int(n)])if mask[int(m),int(n)]<1.:if  pv< 0.05 and pv>= 0.01:ax.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')if  pv< 0.01 and pv>= 0.001:ax.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')if  pv< 0.001:ax.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')plt.tight_layout()plt.savefig(pngpath,dpi = 600)if __name__ == '__main__':df = sns.load_dataset('titanic')print(df)pngpath = r'D:\ForestMeteorology\Study\相关性\GZH.png'plot_p(df,pngpath)plt.show()

热力图的其他设置请参考seaborn官网。
以上就是本期推文的全部内容了,如果对你有帮助的话,请‘点赞’、‘收藏’,‘关注’,你们的支持是我更新的动力。

这篇关于【Python基础绘图】自定义函数,一键标注相关性热力图的显著性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435435

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ