PLG(Promtail + Loki + Grafana)日志系统生产快速实践

2023-11-30 02:20

本文主要是介绍PLG(Promtail + Loki + Grafana)日志系统生产快速实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

随着公司业务发展,支撑公司业务的各种系统越来越多,为了保证公司的业务正常发展,急需要对这些线上系统的运行进行监控,做到问题的及时发现和处理,最大程度减少对业务的影响。因此有必要引入一套日志监控系统。

ELK (Elasticsearch 、 Logstash和Kibana) 是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦难,有点杀鸡用牛刀了。

PLG (Promtail + Loki + Grafana) 轻量级的,配置要求也不高(最后有个简单的实验),功能简单,但是目的明确,就是日志采集。

如果是简单进行日志查询,硬件资源不充裕那 PLG 绝对是好选择。

1.简介

Promtail: 日志收集的代理,安装部署在需要收集和分析日志的服务器,promtail会将日志发给Loki服务。

Loki: 主服务器,负责存储日志和处理查询。

Grafana:提供web管理界面,数据展示功能。

https://grafana.com/docs/

PLG 官方文档很丰富,大家可以在网络上找到丰富的资料,这里就不多讲解了。

2.PLG 安装

Loki: https://grafana.com/docs/loki/latest/installation/

Grafana:https://grafana.com/docs/grafana/latest/setup-grafana/installation/

Promtail:https://grafana.com/docs/loki/latest/clients/promtail/installation/

安装都很简单
这里使用源码安装:

loki 和 promtail 可以到这里下载 https://github.com/grafana/loki/releases/

Grafana 下载地址:https://grafana.com/grafana/download?platform=linux

2.1 loki 安装

下载:

wget https://github.com/grafana/loki/releases/download/v2.7.1/loki-linux-amd64.zip

下载配置:

wget https://raw.githubusercontent.com/grafana/loki/master/cmd/loki/loki-local-config.yaml

解压&启动:

unzip loki-linux-amd64.zip
./loki-linux-amd64 --config.file loki-local-config.yaml

2.2 promtail 安装

下载:

wget https://github.com/grafana/loki/releases/download/v2.2.1/promtail-linux-amd64.zip

下载配置:

wget https://raw.githubusercontent.com/grafana/loki/main/clients/cmd/promtail/promtail-local-config.yaml

解压&启动:

unzip promtail-linux-amd64.zip
./promtail-linux-amd64 --config.file promtail-local-config.yaml

2.3 Grafana 安装

下载:

wget https://dl.grafana.com/enterprise/release/grafana-enterprise-9.3.6.linux-amd64.tar.gz

解压&启动:

tar -zxvf grafana-enterprise-9.3.6.linux-amd64.tar.gz
./grafana-9.3.6/bin/grafana-server

经过上面的步骤后就算是安装成功了,接下来讲解下生产环境下我们是怎么使用的。

3.生产如何配置

3.1 loki 配置

下面是一般生产上使用的配置,更多详细配置可以参考https://grafana.com/docs/loki/latest/configuration/

auth_enabled: falseserver:http_listen_port: 3100  # http 端口grpc_listen_port: 9096common:path_prefix: /data/lokistorage:filesystem:  # loki 存储位置chunks_directory: /data/loki/chunksrules_directory: /data/loki/rulesreplication_factor: 1ring:instance_addr: 127.0.0.1kvstore:store: inmemoryquery_range:results_cache:cache:embedded_cache:enabled: truemax_size_mb: 100
compactor:working_directory: /data/loki/compactor      # 压缩目录,一般也作为持久化目录compaction_interval: 10m                 # 压缩间隔retention_enabled: true                  # 持久化开启retention_delete_delay: 2h               # 过期后多久删除retention_delete_worker_count: 150       # 过期删除协程数目
schema_config:configs:- from: 2020-10-24store: boltdb-shipperobject_store: filesystemschema: v11index:prefix: index_period: 24h  ruler:alertmanager_url: http://localhost:9093
limits_config:reject_old_samples: true   # 是否拒绝旧样本reject_old_samples_max_age: 168h   # 168小时之前的样本被拒绝chunk_store_config:max_look_back_period: 168h  # 为避免查询超过保留期的数据,必须小于或等于下方的时间值
table_manager:retention_deletes_enabled: true   # 保留删除开启retention_period: 168h  # 超过168h的块数据将被删除,必须为24h的倍数

3.2 promtail 配置

下面以一个简单的例子:

LOG [INFO][2023-02-06 17:29:50 +0800] [][reactor-http-epoll-6]  K-Trace-Id:[63e0c88ed5de1c4cc5ace63b],method:POST,url:http://10.0.0.102/api/report/open/buried,body:{"eventTypeId":49,"ip":"10.0.2.55","userId":"10006429","referrer":"http://localhost:8081/","equipment":"pc"} 
server:http_listen_port: 9080grpc_listen_port: 0positions:filename: /tmp/positions.yamlclients:- url: http://10.0.0.32:3100/loki/api/v1/push  # 推送到loki地址 
scrape_configs:
- job_name: logs  # 唯一static_configs:- targets:- localhost  # 读取本地文件labels: # labels 用户loki labels查询job: admin-service__path__: /data/logs/admin-service/*/*info.log  # 读取后缀为info.log的日志文件- targets:- localhost  labels: job: gateway-service__path__: /data/logs/gateway-service/*/*info.log pipeline_stages:- match:selector: '{job="admin-service"}' #  job为admin-service可以匹配到stages:- multiline:firstline: '^LOG'  # LOG开头进行多行合并- regex:expression: '.*(?P<level>INFO|WARN|ERROR).*' # 正则匹配解析 level - timestamp:format: RFC3339Nanosource: timestamp- labels:timestamp:level:  # 将level 作为以一个标签 ,label loki会建立索引,加快查询- match:selector: '{job="gateway-service"}'stages:- multiline:firstline: '^LOG'  - regex:expression: '.*(?P<level>INFO|WARN|ERROR).*'- timestamp:format: RFC3339Nanosource: timestamp- labels:timestamp:level: 

个人使用中觉得 match 下面的自定义 label ,在实际使用中很有用,可以非常方便的进行自定义查询,速度很快。

3.2 Grafana配置

Grafana 无需修改配置文件,而是直接在页面上配置。Grafana 默认端口为 3000

http://10.0.0.32:3000/
10.0.0.32 为你安装Grafana 机器地址
在这里插入图片描述
默认账号和密码 均为 admin。

1.登录后添加数据源。

在这里插入图片描述
选择loki
在这里插入图片描述

2.配置loki地址

在这里插入图片描述
点击 Save & test 完成loki配置
在这里插入图片描述

3.开始日志查询

在这里插入图片描述

4.常见查询场景
1.根据label 查询

​ 可以查到的label 都在promtail 配置中labels中配置。
在这里插入图片描述
​ 这个就表示查询 job 为 kakaclo-gateway-service 的日志。
在这里插入图片描述
这个表示 查询 level为 INFO 的日志。
在这里插入图片描述
也可以组合起来查询。
在这里插入图片描述

2.根据内容查询

一个很常见的场景就是想更具日志中某个内容进行查询,如根据 trace_id或某个特定的日志内容 进行查询。
在这里插入图片描述

日志查询可以支持很多条件, 具体可以参考https://grafana.com/docs/loki/latest/logql/

4.资源消耗测试

测试环境 16G 8核机器,日均日志量300M。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

运行两天,cpu 1.7% ,内存 消耗 16*0.8% = 0.128G = 131M 。

日志原始文件 420M ,loki 压缩后消耗 26M。

这么看资源消耗还是相当少的,日志压缩率 达到 6.2%。

5.Grafana Dashboards

生产环境中不是所有人都拥有 admin权限,但是又想查看对应的日志。这个时间就可以用到 Dashboard,生成Dashboard可以方便只读权限人员查看日志。下面推荐个loki很实用的Dashboard
https://grafana.com/grafana/dashboards/13639-logs-app/
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

导入后就可以loki数据源就可以用了
在这里插入图片描述
在这里插入图片描述

5.生产实践的一些建议

1. 日志最好有统一规范

日志统一后方便提取共同的标签 如

ACTLOG [INFO][2023-02-13 17:16:02 +0800] [63e9ffd2d5de0bbaf7e4d890][NettyServer-10.0.0.121:8002-3-thread-19] com.happotech.actmgr.motan.service.impl.ActMgrServiceImpl.getAccountInfoThird(ActMg

这个可以方便定位日志属于那个系统 ,日志等级,日志时间,日志内容,链路id。如果日志格式不统一,那定位不同系统的问题起来就会很蛋疼。

2. 最好拥有全路径 trace_id

有了全路径id后查找问题那就是顺藤摸瓜的事,效率相当高

这里具体可以参考:

https://blog.csdn.net/AndCo/article/details/126542050?spm=1001.2014.3001.5502

3. 日志可以输出到统一的目录中

输出到统一的目录中后,日志收集和管理会简单很多。

例如不同的机器可以挂载一个统一的nas盘,把日志都输出到nas盘中,读取日志就变得很简单。
更多文章可以关注 海鸥技术部落公众号

这篇关于PLG(Promtail + Loki + Grafana)日志系统生产快速实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435253

相关文章

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio