OpenCV | 傅里叶变换——低通滤波器与高通滤波器

2023-11-29 10:52

本文主要是介绍OpenCV | 傅里叶变换——低通滤波器与高通滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  import cv2 #opencv 读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt #Matplotlib是RGB
%matplotlib inline
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

傅里叶变换

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使图像模糊
  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
  • cv2.dft()返回的结果是双通道的(实部、虚部),通常还需要转换成图像格式才能展示(0,255)

lean.jpg

低通滤波:

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)dft = cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow,ccol = int(rows/2),int(cols/2) #中心位置#低通滤波
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30,ccol-30:ccol+30]=1#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap='gray')
plt.title('Result'),plt.xticks([]),plt.yticks([])
plt.show()

运行结果: 

 

高通滤波: 

 

img = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()  

运行结果: 

这篇关于OpenCV | 傅里叶变换——低通滤波器与高通滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432550

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

虚拟机ubuntu配置opencv和opencv_contrib

前期准备  1.下载opencv和opencv_contrib源码 opencv-4.6.0:https://opencv.org/releases/ opencv_contrib-4.6.0:https://github.com/opencv/opencv_contrib 在ubuntu直接下载或者在window上下好传到虚拟机里都可以 自己找个地方把他们解压,个人习惯在home下新建一

Windows下使用cmake编译OpenCV

Windows下使用cmake编译OpenCV cmake下载OpenCV下载编译OpenCV cmake下载 下载地址:https://cmake.org/download/ 下载完成,点击选择路径安装即可 OpenCV下载 下载地址:https://github.com/opencv/opencv/releases/tag/4.8.1因为我们是编译OpenCV,下图选择