YOLO改进系列之SKNet注意力机制

2023-11-29 07:04

本文主要是介绍YOLO改进系列之SKNet注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

视皮层神经元的感受野大小受刺激的调节即对于不同的刺激,卷积核的大小应该不同,但在构建CNN时一般在同一层只采用一种卷积核,很少考虑因采用不同卷积核。于是SKNet被提出,在SKNet中,不同大小的感受视野(卷积核)对于不同尺度的目标会有不同的效果。尽管在Inception中使用多个卷积核来适应不同尺度图像,但是卷积核权重相同,也就是参数就是被计算好的了。而SKNet 对不同输入使用的卷积核感受野不同,参数权重也不同,可以根据输入大小自适应地进行处理。SKNet提出一种动态选择机制,允许每个神经元根据输入信息的多个尺度自适应调整其接受野的大小。设计了一种称为选择性内核(Selective Kernel)单元的构建模块,在该模块中,由不同内核大小的多个分支的信息引导,使用Softmax的注意力进行融合,从而对这些分支的不同关注导致融合层神经元有效感受野的大小不同。
论文地址:https://arxiv.org/pdf/1903.06586.pdf
代码地址:https://github.com/implus/SKNet

模型结构

在这里插入图片描述

SKNet网络主要由三个部分组成:Split、Fuse、Select。其中,Split部分将输入信息分别输入不同的核大小(这里是2个卷积核,卷积核大小分别为:33 和 55);Fuse部分进行特征融合;Select部分根据计算得到的权重对相应的特征进行选择操作。
Split部分
对于输入信息X,在Split中分别输入两个卷积层(默认为2个,根据需要可以设计多个),两个卷积核的尺寸分别为33和55。其中,每个卷积层都是由高效的分组/深度卷积、批处理归一化和ReLU函数依次组成的。另外,为了进一步提高效率,将具有5*5核的传统卷积替换为具有3×3核和膨胀大小为2的扩展卷积。最终得到中间层输出特征图。
Fuse部分
基本思想是使用门来控制来自多个分支的信息流,这些分支携带不同尺度的信息到下一层的神经元中。为实现这一目标,门需要整合来自所有分支的信息。该模块首先通过Element-wise Summation操作来融合来自多个分支的结果,再使用全局平均池化以生成Channel-wise统计信息来生成全局信息,此外还创建一个紧凑的特征z以便为精确和自适应选择提供指导,这是通过一个简单的全连接层实现的,降低了维度同时提高效率。
Select部分
Select操作使用a和b两个权重矩阵分别对中间层输入特征图进行加权操作,然后求和得到最终的输出向量。

实现代码

在这里插入图片描述

YOLOv5模型改进

本文在YOLOv5目标检测算法的Backbone和Head部分分别加入SKAttention来增强目标提取能力,以下分别是在Backbone以及Head中改进的模型结构和参数(以YOLOv5s为例)。
在Backbone部分
在这里插入图片描述
在这里插入图片描述

在Head部分
在这里插入图片描述
在这里插入图片描述

总结

SKNet中使用了不同的卷积核,且卷积核权重是不同的,这有助于模型学习不同尺寸目标的特征信息,其被广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文在YOLOv5目标检测算法基础上引入SKAttention来进一步增强模型对多尺寸目标的特征提取能力,并输出改进后模型每层的输出与模型参数、梯度和计算量。此外,SKAttention可进一步应用于YOLOv7、YOLOv8等模型中,欢迎大家关注本博主的微信公众号 BestSongC,后续更多的资源如模型改进、可视化界面等都会在此发布。另外,本博主最近也在MS COCO数据集上跑了一些YOLOv5的改进模型,实验表明改进后的模型能在MS COCO 2017验证集上分别涨点1-3%,感兴趣的朋友关注后回复YOLOv5改进

这篇关于YOLO改进系列之SKNet注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431899

相关文章

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,