正确的BresenHam算法。请各位讲解一下优化算法!

2023-11-29 03:18

本文主要是介绍正确的BresenHam算法。请各位讲解一下优化算法!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     正确的画直线算法:
     不过,第二个使用整数的变形算法搞不大明白

/*Bresenham算法

    Bresenham算法是计算机图形学领域使用最广泛的直线扫描转换算法。仍然假定直线斜率在0~1之间,该方法类似于中点法,由一个误差项符号决定下一个象素点。

    算法原理如下:过各行各列象素中心构造一组虚拟网格线。按直线从起点到终点的顺序计算直线与各垂直网格线的交点,然后确定该列象素中与此交点最近的象素。该算法的巧妙之处在于采用增量计算,使得对于每一列,只要检查一个误差项的符号,就可以确定该列的所求象素。

    如图2.1.4所示,设直线方程为yi+1=yi+k(xi+1-xi)+k。假设列坐标象素已经确定为xi,其行坐标为yi。那么下一个象素的列坐标为xi+1,而行坐标要么为yi,要么递增1为yi+1。是否增1取决于误差项d的值。误差项d的初值d0=0,x坐标每增加1,d的值相应递增直线的斜率值k,即d=d+k。一旦  d≥1,就把它减去1,这样保证d在0、1之间。当d≥0.5时,直线与垂线x=xi+1交点最接近于当前象素(xi,yi)的右上方象素(xi+1,yi+1);而当d<0.5时,更接近于右方象素(xi+1,yi)。为方便计算,令e=d-0.5,e的初值为-0.5,增量为k。当e≥0时,取当前象素(xi,yi)的右上方象素(xi+1,yi+1);而当e<0时,取(xi,yi)右方象素(xi+1,yi)。

 

图2.1.4 Bresenham算法所用误差项的几何含义

 */


 //Bresenham画线算法程序:

void Bresenhamline (int x0,int y0,int x1, int y1,int color)

{ int x, y, dx, dy;

  float k, e;

  dx = x1-x0;dy = y1- y0;k=dy/dx;//dx,dy是直线总的增量。k是实数的斜率
 
  e=-0.5; x=x0;y=y0;//x,y为起点。e是调整数,以使问题成为〉=0,还是<0的问题。
/*
为方便计算,令e0=-0.5,e i+1=di+1-0.5,增量为k。当ei+1≥0时,取当前像素(xi,yi)
的右上方像素(xi+1, yi+1);而当e i+1<0时,更接近于右方像素(xi+1,yi)。
*/
//这里,我们利用了k=dy/dx这个斜率,而不是利用上面的逐个比较的方法。
//实数yi的值>=0.5,则用y(整数)+1的像素,<0.5则y轴仍用上一个像素的y坐标。
//一旦,用y+1,则我们的yi这个y轴的实数增量就会多出1这个增量。所以,一旦y++,就要yi--。
//这里,为了使我们不是判断是否>=0.5,而是改为判断是否>=0,我们需要对所有的yi-0.5。
//这实际上只需yi-0.5一次即可。因为yi是连续的增量----+k。
//这里我们用float e表示yi,并且赋e=-0.5,以后e=e+k,这样实际上就实现了给e-0.5的目的。
  for (i=0;i<dx;i++)//循环dx次,即绘制dx个像素。
  { drawpixel (x, y, color);

    x=x+1;e=e+k;

    if (e>=0)

    { y++; e=e-1;}

  }

}

 /*举例:用Bresenham方法扫描转换连接两点P0(0,0)和P1(5,2)的直线段。

 i x y e
0
 --  0 0 -0.5
    1     -0.1
      
   1 0 -0.1

   2 1 -0.7

   3 1 -0.3

   4 2 -0.9                                    图2.1.5 Bresenham算法

   5 2 -0.5

 

    上述Bresenham算法在计算直线斜率与误差项时用到小数与除法。可以改用整数以避免除法。
    由于算法中只用到误差项的符号,因此可作如下替换:2*e*dx。 

 改进的Bresenham画线算法程序:
*/
void InterBresenhamline (int x0,int y0,int x1, int y1,int color)

{
int x, y, dx, dy;

 int k, e;
dx = x1-x0;dy = y1- y0;e=-dx;

  x=x0;
  y=y0;

  for (i=0; i<dx; i++)

  {drawpixel (x, y, color);

   x++; e=e+2*dy;//大概是用2倍的y的绝对增量减去x的绝对增量这样的方法来计算的。
   //具体怎样也搞不清楚!!!!!

   if (e>=0) { y++; e=e-2*dx;}

   }

}

 

这篇关于正确的BresenHam算法。请各位讲解一下优化算法!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431243

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,