AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“

2023-11-29 01:52

本文主要是介绍AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概念
  • 例子

概念

在计算机科学和编程中,特别是在高性能计算和优化编译器设计领域,“loop tiling”、“ordering”、"caching"和"unrolling"是一些常见的术语,它们涉及到改进程序性能的不同策略。下面分别解释这些术语的意思:

  1. Loop Tiling(循环平铺):
    循环平铺是一种循环变换技术,用于优化多维循环的性能,这通常在处理大型数组或矩阵时很有用。目的是将大循环分解成“块”或“瓦片”,使得每个小块的数据能够有效地放入CPU缓存中,从而减少对主存储器的访问次数。这有助于提高局部性,因为缓存比主内存有更快的访问速度。

  2. Ordering(顺序):
    编程中的循环顺序是指嵌套循环访问数据的顺序。例如,在二维数组中,你可以先按行(row-major order)访问,也可以先按列(column-major order)访问。选择正确的循环顺序可以增加程序的缓存命中率,从而提高性能。

  3. Caching(缓存):
    在编程中,缓存是一种保存数据副本的技术,目的是在后续访问时可以更快地获取数据。在循环优化中,考虑如何有效使用CPU的缓存极其重要,因为存储器访问是影响性能的关键因素之一。合理的缓存使用可以显著减少从主内存中加载数据的次数,因为内存访问比缓存访问的成本要高得多。

  4. Unrolling(展开):
    循环展开是一种编译器优化技术,它通过减少循环迭代的次数来减少循环控制开销。通过将一个循环的多个迭代合并为一个迭代里面的多个连续操作,可以减少循环维护(比如递增计数器和条件跳转)的次数。循环展开可以增加程序的大小,但通常能减少执行时间,特别是在循环的迭代次数非常多的时候。

这些技术通常在编译器自动优化代码时使用,但也可以由程序员手动应用,特别是在性能关键的代码段中。正确应用这些优化技术可以在不改变程序功能的前提下显著提升程序的执行速度。

一个简单的例子如下:

例子

  1. Loop Tiling(循环平铺):

假设有一个对矩阵进行计算的嵌套循环,例如矩阵乘法。不使用循环平铺的代码可能看起来像这样:

#define N 1024
double A[N][N], B[N][N], C[N][N];void matrix_multiply() {for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {C[i][j] = 0;for (int k = 0; k < N; k++) {C[i][j] += A[i][k] * B[k][j];}}}
}

应用循环平铺的版本可能是这样的:

#define N 1024
#define TILE_SIZE 32 // 假设这是一个合适的平铺大小
double A[N][N], B[N][N], C[N][N];void tiled_matrix_multiply() {for (int i = 0; i < N; i += TILE_SIZE) {for (int j = 0; j < N; j += TILE_SIZE) {for (int k = 0; k < N; k += TILE_SIZE) {for (int ii = i; ii < i + TILE_SIZE; ii++) {for (int jj = j; jj < j + TILE_SIZE; jj++) {for (int kk = k; kk < k + TILE_SIZE; kk++) {C[ii][jj] += A[ii][kk] * B[kk][jj];}}}}}}
}
  1. Ordering(顺序):

访问二维数组时,行优先和列优先的访问方式对性能有很大影响。假定一个简单的二维数组求和:

#define N 1024
double A[N][N];// 行优先访问
double sum_row_major() {double sum = 0;for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {sum += A[i][j];}}return sum;
}// 列优先访问
double sum_column_major() {double sum = 0;for (int j = 0; j < N; j++) {for (int i = 0; i < N; i++) {sum += A[i][j];}}return sum;
}
  1. Caching(缓存):

使用缓存来提高数据访问速度的一个例子可能是计算斐波那契数列,用一个数组来缓存以前计算的结果:

# 斐波那契数列的缓存实现
def fibonacci(n, cache={}):if n in cache:return cache[n]if n <= 1:return nelse:cache[n] = fibonacci(n-1, cache) + fibonacci(n-2, cache)return cache[n]# 可以这样使用
print(fibonacci(50))  # 非常快速地计算出结果
  1. Unrolling(展开):

下面是一个简单的循环展开例子,展开后的循环可以减少循环迭代的次数:

#define N 1024
double A[N];// 未展开的循环
void sum_array() {double sum = 0;for (int i = 0; i < N; i++) {sum += A[i];}
}// 展开的循环
void sum_array_unrolled() {double sum = 0;for (int i = 0; i < N; i += 4) { // 一次处理4个元素sum += A[i] + A[i+1] + A[i+2] + A[i+3];}
}

在这些例子中,使用循环平铺和循环顺序优化可以改进缓存使用效率,而使用缓存(在斐波那契数列的例子中)可以避免重复计算,循环展开可以减少循环的开销。这些优化通常是提高软件性能的强有力工具。

这篇关于AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431023

相关文章

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言