AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“

2023-11-29 01:52

本文主要是介绍AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概念
  • 例子

概念

在计算机科学和编程中,特别是在高性能计算和优化编译器设计领域,“loop tiling”、“ordering”、"caching"和"unrolling"是一些常见的术语,它们涉及到改进程序性能的不同策略。下面分别解释这些术语的意思:

  1. Loop Tiling(循环平铺):
    循环平铺是一种循环变换技术,用于优化多维循环的性能,这通常在处理大型数组或矩阵时很有用。目的是将大循环分解成“块”或“瓦片”,使得每个小块的数据能够有效地放入CPU缓存中,从而减少对主存储器的访问次数。这有助于提高局部性,因为缓存比主内存有更快的访问速度。

  2. Ordering(顺序):
    编程中的循环顺序是指嵌套循环访问数据的顺序。例如,在二维数组中,你可以先按行(row-major order)访问,也可以先按列(column-major order)访问。选择正确的循环顺序可以增加程序的缓存命中率,从而提高性能。

  3. Caching(缓存):
    在编程中,缓存是一种保存数据副本的技术,目的是在后续访问时可以更快地获取数据。在循环优化中,考虑如何有效使用CPU的缓存极其重要,因为存储器访问是影响性能的关键因素之一。合理的缓存使用可以显著减少从主内存中加载数据的次数,因为内存访问比缓存访问的成本要高得多。

  4. Unrolling(展开):
    循环展开是一种编译器优化技术,它通过减少循环迭代的次数来减少循环控制开销。通过将一个循环的多个迭代合并为一个迭代里面的多个连续操作,可以减少循环维护(比如递增计数器和条件跳转)的次数。循环展开可以增加程序的大小,但通常能减少执行时间,特别是在循环的迭代次数非常多的时候。

这些技术通常在编译器自动优化代码时使用,但也可以由程序员手动应用,特别是在性能关键的代码段中。正确应用这些优化技术可以在不改变程序功能的前提下显著提升程序的执行速度。

一个简单的例子如下:

例子

  1. Loop Tiling(循环平铺):

假设有一个对矩阵进行计算的嵌套循环,例如矩阵乘法。不使用循环平铺的代码可能看起来像这样:

#define N 1024
double A[N][N], B[N][N], C[N][N];void matrix_multiply() {for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {C[i][j] = 0;for (int k = 0; k < N; k++) {C[i][j] += A[i][k] * B[k][j];}}}
}

应用循环平铺的版本可能是这样的:

#define N 1024
#define TILE_SIZE 32 // 假设这是一个合适的平铺大小
double A[N][N], B[N][N], C[N][N];void tiled_matrix_multiply() {for (int i = 0; i < N; i += TILE_SIZE) {for (int j = 0; j < N; j += TILE_SIZE) {for (int k = 0; k < N; k += TILE_SIZE) {for (int ii = i; ii < i + TILE_SIZE; ii++) {for (int jj = j; jj < j + TILE_SIZE; jj++) {for (int kk = k; kk < k + TILE_SIZE; kk++) {C[ii][jj] += A[ii][kk] * B[kk][jj];}}}}}}
}
  1. Ordering(顺序):

访问二维数组时,行优先和列优先的访问方式对性能有很大影响。假定一个简单的二维数组求和:

#define N 1024
double A[N][N];// 行优先访问
double sum_row_major() {double sum = 0;for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {sum += A[i][j];}}return sum;
}// 列优先访问
double sum_column_major() {double sum = 0;for (int j = 0; j < N; j++) {for (int i = 0; i < N; i++) {sum += A[i][j];}}return sum;
}
  1. Caching(缓存):

使用缓存来提高数据访问速度的一个例子可能是计算斐波那契数列,用一个数组来缓存以前计算的结果:

# 斐波那契数列的缓存实现
def fibonacci(n, cache={}):if n in cache:return cache[n]if n <= 1:return nelse:cache[n] = fibonacci(n-1, cache) + fibonacci(n-2, cache)return cache[n]# 可以这样使用
print(fibonacci(50))  # 非常快速地计算出结果
  1. Unrolling(展开):

下面是一个简单的循环展开例子,展开后的循环可以减少循环迭代的次数:

#define N 1024
double A[N];// 未展开的循环
void sum_array() {double sum = 0;for (int i = 0; i < N; i++) {sum += A[i];}
}// 展开的循环
void sum_array_unrolled() {double sum = 0;for (int i = 0; i < N; i += 4) { // 一次处理4个元素sum += A[i] + A[i+1] + A[i+2] + A[i+3];}
}

在这些例子中,使用循环平铺和循环顺序优化可以改进缓存使用效率,而使用缓存(在斐波那契数列的例子中)可以避免重复计算,循环展开可以减少循环的开销。这些优化通常是提高软件性能的强有力工具。

这篇关于AI编译优化技术“loop tiling“、“ordering“、“caching“和“unrolling“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431023

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份