Matlab通信仿真系列——信号的傅里叶(Fourier)分析

2023-11-28 11:12

本文主要是介绍Matlab通信仿真系列——信号的傅里叶(Fourier)分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等
在这里插入图片描述
本节目录

一、连续信号傅里叶变换
1、定义
2、fourier和ifourier函数
3、傅里叶级数
4、X(kΩ0)和X()
二、离散信号的傅里叶变换
1、定义
2、Matlab频谱图绘制
3、Matlab验证DTFT的频移
4、Matlab验证的DTFT卷积性质
5.Matlab验证DFT的卷积性质
三、Matlab源码
1、fourier和ifourier函数源码
2、Matlab频谱图绘制源码
3、Matlab验证DTFT的频移源码
4、Matlab验证的DTFT卷积性质源码
5、Matlab实现DFT和IDFT运算
6、Matlab验证DFT的卷积性质源码

本节内容
信号的傅里叶Fourier分析包括了连续信号傅里叶变换、离散信号的傅里叶变换。
一、连续信号傅里叶变换
1、定义

设x(t)为连续时间信号,如果x(t)绝对可积,即
在这里插入图片描述
则x(t)的傅里叶变换存在,并定义为
在这里插入图片描述
其反变换为
在这里插入图片描述
上述式中Ω=2πf,单位为rad/s
X(JΩ)=|X(JΩ)|e^(Jφ(Ω)),其中|X(JΩ)|表示幅频特性,φ(Ω)表示相频特性。
2、fourier和ifourier函数
Matlab中提供了求解傅里叶变换及其逆变换的函数
F=fourier(f)表示函数f的傅里叶变换,返回的是关于ω的函数。
f=ifourier(F)表示函数F的逆变换,默认的独立变量是ω,返回的是关于x的函数。
在使用fourier和ifourier函数之前,必须用syms命令对所用的变量进行符合说明。同时返回得到的函数仍是符合变量,因此应用ezplot绘图。
在这里插入图片描述
在这里插入图片描述

3、傅里叶级数
只有非周期信号才有傅里叶变换。
若x(t)满足狄利克雷条件,可以将其展开为傅里叶级数,
在这里插入图片描述

式中Ω0=2πf0,表示信号x(t)的基波频率;kΩ0为第k次谐波频率;
X(kΩ0)表示x(t)在k次谐波处的傅里叶级数,幅度表示信号x(t)所包含的频率为kΩ0的成分大小。
周期信号x(t)可以由无数的复正弦{e^(jkΩ0t),k=0,±1,…,±∞}作为基本信号再乘以不同的加权值X(kΩ0)复合而成。X(kΩ0)是频率kΩ0相应复正弦的幅度。
X(kΩ0)仅在k=0,±1,…,±∞取值,故在频率轴上为离散值,
在这里插入图片描述
X(kΩ0)用复数表示为
在这里插入图片描述
|X(k)|表示频率为nf0的分量的振幅;θk表示频率为nf0的分量的相位。
4、X(kΩ0)和X(jΩ)
X(kΩ0)是Ω轴上的离散函数,取Ω的整数倍;X(jΩ)是Ω的连续函数。
X(kΩ0)是谐波振幅的表述;X(jΩ)是频谱密度的表述。
二、离散信号的傅里叶变换
1、定义

离散信号h(n)为线性时不变系统的单位抽样响应,且绝对可和的,即满足
在这里插入图片描述

系统的频率响应,即离散时间序列的傅里叶变换DTFT为:
在这里插入图片描述

傅里叶逆变换IDTFT为:
在这里插入图片描述

其中H(e^(jω))是ω的周期为2π的连续周期函数,ω表示弧度,数字频率。
在这里插入图片描述
2、Matlab频谱图绘制

matlab代码示例:
①求序列h1(n)=e^(-|0.1n|)的离散傅里叶变换,
其中-15≤n≤15
②求序列h2(n)=1的离散傅里叶变换,
其中0≤n≤20
傅里叶变换参考上述的公式进行算,
需要留意“n1'”表示n1的转置。

在这里插入图片描述
在这里插入图片描述

3、Matlab验证DTFT的频移
离散时间信号的DTFT的频移性质,序列乘以复指数序列对应于频域的频移。
在这里插入图片描述

matlab代码示例:
①求序列h(n)=1的DTFT,其中0≤n≤20
②求序列x(n)=h(n)e^(jπn/4)
③求序列y(n)=h(n)e^(jπn/2)
x(n)是序列h(n)平移了π/4
y(n)是序列h(n)平移了π/2

4、Matlab验证的DTFT卷积性质
一个单位脉冲响应为h(n)的系统对输入序列x(n)的输出为y(n)=x(n)*h(n)
根据DTFT卷积性质可得:
Y(e^(jw))=DTFT[y(n)]
=DTFT[x(n)*h(n)]=X(e ^ (jw))×H(e ^ (jw))
在这里插入图片描述
在这里插入图片描述

5.Matlab实现DFT和IDFT运算
一个给定离散序列x(n),DFT对应在时域、频域上都是有限长,而且是离散的,该离散序列的DFT和IDFT:
在这里插入图片描述
其中W(N)=e^(-j×2π/N)
在这里插入图片描述
在这里插入图片描述

5、Matlab验证DFT的卷积性质
在Matlab中提供fft函数来计算有限离散序列的DFT。
DFT的循环卷积性质
设序列x(n),h(n)都是N点序列,其DFT分别为X(k),H(k),Y(k)
在这里插入图片描述
其中H为循环矩阵,或者循环卷积。
由第1行开始,依次向右移动一个元素,移出去的元素在下一行的最左边出现,即每一行都是h(0),h(N-1),……h(1)这N个元素依次移动生成的。
如果x(n)是M点序列,h(n)是L点序列,y(n)=x(n)*h(n),即y(n)使x(n)和h(n)的线性卷积,y(n)序列的点数为(M+L-1)
在这里插入图片描述
在这里插入图片描述

toeplitz函数的用法,可以用help toeplitz指令获取帮助。
在这里插入图片描述

二、Matlab源码
1、fourier和ifourier函数源码

clear all;
n=0:30;
x=sin(0.2*n).*exp(-0.1*n);
k=0:30;
N=31;
X=x*(exp(-j*2*pi/N).^(n'*k));
subplot(2,1,1);
stem(n,x);
title('x序列');
subplot(2,1,2);
stem(-15:15,[abs(17:end)abs(]);
title('X幅度');

2、Matlab频谱图绘制源码

clear all;
w=-4:0.001:4;   %设置频率w的范围,相邻数字频率之间间隔为0.001
n1=-15:15;          %h1(n)序列的范围
n2=0:20;            %h2(n)序列的范围
h1=exp(-abs(0.1*n1));
h2(n2+1)=1;
Hjw1=h1*(exp(-j*pi).^(n1'*w));   %h1(n)的傅里叶变换
Hjw2=h2*(exp(-j*pi).^(n2'*w));   %h2(n)的傅里叶变换
subplot(2,1,1);
plot(w,abs(Hjw1))
title('h1');
xlabel('pi弧度(w)');
ylabel('振幅');
subplot(2,1,2);
plot(w,abs(Hjw2));
title('h2');
xlabel('pi弧度(w)');
ylabel('振幅');

3、Matlab验证DTFT的频移源码

clear all;
w=-1:0.001:1;
n=0:20;
h(n+1)=1;
x=h.*exp(j*pi*n/4);
y=h.*exp(j*pi*n/2);
Hjw=h*(exp(-j*pi).^(n'*w));
Xjw=x*(exp(-j*pi).^(n'*w));
Yjw=y*(exp(-j*pi).^(n'*w));
subplot(3,2,1);
plot(w,abs(Hjw))
title('H');
xlabel('pi弧度(w)');
ylabel('振幅');
subplot(3,2,2);
plot(w,angle(Hjw)/pi);
title('H');
xlabel('pi弧度(w)');
ylabel('相位');
subplot(3,2,3);
plot(w,abs(Xjw))
title('X');
xlabel('pi弧度(w)');
ylabel('振幅');
subplot(3,2,4);
plot(w,angle(Xjw)/pi);
title('X');
xlabel('pi弧度(w)');
ylabel('相位');
subplot(3,2,5);
plot(w,abs(Yjw))
title('Y');
xlabel('pi弧度(w)');
ylabel('振幅');
subplot(3,2,6);
plot(w,angle(Yjw)/pi);
title('Y');
xlabel('pi弧度(w)');
ylabel('相位');

4、Matlab验证的DTFT卷积性质源码

clear all;
w=-1:0.001:1;                             %频率w范围,以及间隔为0.001    
n=0:30;
h=sinc(0.2*n);                           %系统的脉冲响应序列
x=2*sin(0.2*pi*n)+3*cos(0.4*pi*n);           %系统的输入信号序列
Hjw=h*(exp(-j*pi).^(n'*w));                  %脉冲响应的DTFT
Xjw=x*(exp(-j*pi).^(n'*w));                  %输入信号的DTFT
Yjw=Xjw.*Hjw;                           %输出信号的DTFT
n1=0:2*length(n)-2;                  %输出序列的长度
dw=0.001*pi;                            %分段求和的步长
y=(dw*Yjw*(exp(j*pi).^(w'*n1)))/(2*pi);         %分段求和方式代替积分
y1=conv(x,h);                           %时序卷积计算
subplot(3,1,1);
plot(w,abs(Hjw))
title('脉冲响应的DTFT');
xlabel('pi弧度(w)');
ylabel('振幅');
subplot(3,1,2);
plot(w,abs(Xjw));
title('输入信号的DTFT');
xlabel('pi弧度(w)');
ylabel('相位');
subplot(3,1,3);
plot(w,abs(Yjw))
title('输出信号的DTFT');
xlabel('pi弧度(w)');
ylabel('振幅');figure
subplot(2,1,1);
stem(abs(y));
title('IDTFT计算的输出序列Y');
subplot(2,1,2);
stem(abs(y1));
title('conv时域卷积计算的输出序列Y1');

5、Matlab实现DFT和IDFT运算

clear all;
n=0:30;
x=sin(0.2*n).*exp(-0.1*n);
k=0:30;
N=31;                               %离散蓄力DFT的个数
X=x*(exp(-j*2*pi/N).^(n'*k));       
subplot(2,1,1);
stem(n,x);
title('x序列');
subplot(2,1,2);
%验证DFT的对称性,将其范围修改
stem(-15:15,[abs(X(17:end)) abs(X(1:16))]); 
title('X幅度');
6、Matlab验证DFT的卷积性质源码clear all;
%矩阵的直接法卷积和DFT
h1=[6 3 4 2 1 -2];
x1=[3 2 4 7 -1 -3];
h2=fliplr(h1);                 %h1序列反转
H1=toeplitz(h1,[h1(1) h2(1:5)]);    %h1序列生成循环矩阵
y=H1*x1';                    %根据矩阵定义求解卷积H2=fft(h1);                   %fft函数求卷积
X1=fft(x1);                    
Y1=H2.*X1;
y1=ifft(Y1);
subplot(4,1,1);
stem(y);
title('矩阵的直接计算');
subplot(4,1,2);
stem(y1);
title('矩阵的DFT计算');%线性序列的直接法卷积和DFT
n3=0:20;
n4=0:10;
h3=sinc(0.2*n3);
x3=exp(-0.2*n4);
y3=conv(x3,h3);
%对序列h3和x3补零,构成新的序列h4和x4
h4=[h3 zeros(1,length(x3)-1)];
x4=[x3 zeros(1,length(h3)-1)];
H4=fft(h4);
X4=fft(x4);
Y4=H4.*X4;
y4=ifft(Y4);
subplot(4,1,3);
stem(y3);
title('线性序列的直接计算');
subplot(4,1,4);
stem(y4);
title('线性序列的DFT计算');

这篇关于Matlab通信仿真系列——信号的傅里叶(Fourier)分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/429613

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C