YOLOv5改进 | 添加SE注意力机制 + 更换NMS之EIoU-NMS

2023-11-26 16:52

本文主要是介绍YOLOv5改进 | 添加SE注意力机制 + 更换NMS之EIoU-NMS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:Hello大家好,我是小哥谈。为提高算法模型在不同环境下的目标识别准确率,提出一种基于改进 YOLOv5 深度学习的识别方法(SE-NMS-YOLOv5),该方法融合SE(Squeeze-and-Excitation)注意力机制模块和改进非极大值抑制对数据集进行训练和测试。研究表明,SE-NMS-YOLOv5 目标识别方法有效地解决了不同场景下的检测准确率低的问题,提升了检测和识别的整体效果。🌈 

     目录

🚀1.基础概念

🚀2.添加位置

🚀3.添加步骤

🚀4.改进方法

💥💥步骤1:common.py文件修改

💥💥步骤2:yolo.py文件修改

💥💥步骤3:创建自定义yaml文件

💥💥步骤4:修改自定义yaml文件

💥💥步骤5:验证是否加入成功

💥💥步骤6:更改NMS

💥💥步骤7:修改默认参数

🚀1.基础概念

SE注意力机制:

SENet是由Momenta和牛津大学的胡杰等人提出的一种新的网络结构,目标是通过显式的建模卷积特征通道之间的相互依赖关系来提高网络的表示能力。在2017年最后一届ImageNet 比赛classification任务上获得第一名。SENet网络的创新点在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。为此,SENet提出了Squeeze-and-Excitation (SE)模块

SE模块首先对卷积得到的特征图进行Squeeze操作,得到channel级的全局特征,然后对全局特征进行Excitation操作,学习各个channel间的关系,也得到不同channel的权重,最后乘以原来的特征图得到最终特征。本质上,SE模块是在channel维度上做attention或者gating操作,这种注意力机制让模型可以更加关注信息量最大的channel特征,而抑制那些不重要的channel特征。另外一点是SE模块是通用的,这意味着其可以嵌入到现有的网络架构中。

SENet结构图如下图所示:

🍀步骤1:squeeze操作,将各通道的全局空间特征作为该通道的表示,形成一个通道描述符;

🍀步骤2:excitation操作,学习对各通道的依赖程度,并根据依赖程度的不同对特征图进行调整,调整后的特征图就是SE block的输出。

EIoU-NMS:

EIoU-NMS是一种新的非极大值抑制算法,它是YOLOv5中提出的一种改进算法。EIoU-NMS是在DIoU-NMS的基础上进行改进的。EIoU-NMS的主要思想是将检测框之间的距离嵌入到嵌入空间中,然后计算嵌入空间中的距离来代替传统的IoU计算。这种方法可以更好地处理检测框之间的重叠情况,从而提高目标检测的准确性。


🚀2.添加位置

本文的改进是基于YOLOv5-6.0版本,关于其网络结构具体如下图所示:

为了使网络能够更好地拟合通道之间的相关性,增加更重要的通道特征的权重,引入了SE模块,注意力机制是一种神经网络资源分配方案,用于将计算资源分配给更重要的任务,

本文的改进是将SE注意力机制添加在主干网络中,具体添加位置如下图所示:

关于NMS的改进,直接体现在代码中,所以,本节课改进后的网络结构图具体如下图所示:


🚀3.添加步骤

针对本文的改进,具体步骤如下所示:👇

步骤1:common.py文件修改

步骤2:yolo.py文件修改

步骤3:创建自定义yaml文件

步骤4:修改自定义yaml文件

步骤5:验证是否加入成功

步骤6:更改NMS

步骤7:修改默认参数


🚀4.改进方法

💥💥步骤1:common.py文件修改

common.py中添加SE注意力机制模块,所要添加模块的代码如下所示,将其复制粘贴到common.py文件末尾的位置。

SE注意力机制模块代码:

# SE
class SE(nn.Module):def __init__(self, c1, c2, ratio=16):super(SE, self).__init__()#c*1*1self.avgpool = nn.AdaptiveAvgPool2d(1)self.l1 = nn.Linear(c1, c1 // ratio, bias=False)self.relu = nn.ReLU(inplace=True)self.l2 = nn.Linear(c1 // ratio, c1, bias=False)self.sig = nn.Sigmoid()def forward(self, x):b, c, _, _ = x.size()y = self.avgpool(x).view(b, c)y = self.l1(y)y = self.relu(y)y = self.l2(y)y = self.sig(y)y = y.view(b, c, 1, 1)return x * y.expand_as(x)

💥💥步骤2:yolo.py文件修改

首先在yolo.py文件中找到parse_model函数这一行,加入SE。具体如下图所示:

💥💥步骤3:创建自定义yaml文件

models文件夹中复制yolov5s.yaml,粘贴并重命名为yolov5s_SE_ENMS.yaml具体如下图所示:

💥💥步骤4:修改自定义yaml文件

本步骤是修改yolov5s_SE_ENMS.yaml,根据改进后的网络结构图进行修改。

由下面这张图可知,当添加SE注意力机制之后,后面的层数会发生相应的变化,需要修改相关参数。

备注:层数从0开始计算,比如第0层、第1层、第2层......🍉 🍓 🍑 🍈 🍌 🍐  

综上所述,修改后的完整yaml文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SE, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 15], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

💥💥步骤5:验证是否加入成功

yolo.py文件里,将配置改为我们刚才自定义的yolov5s_SE_ENMS.yaml

修改1,位置位于yolo.py文件165行左右,具体如图所示:

修改2,位置位于yolo.py文件363行左右,具体如下图所示:

配置完毕之后,点击“运行”,结果如下图所示:

由运行结果可知,与我们前面更改后的网络结构图相一致,证明添加成功了!✅

💥💥步骤6:更改NMS

本文需要更改NMS为EIoU-NMS

将下面非极大值抑制NMS核心代码复制粘贴到 utils / general.py 的末尾位置。当复制粘贴后,会有报错提示,具体如下图所示:

# NMS实现代码
def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=True, CIoU=False, EIoU=False, SIoU=False):B = torch.argsort(scores, dim=-1, descending=True)keep = []while B.numel() > 0:index = B[0]keep.append(index)if B.numel() == 1: breakiou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU, EIoU=EIoU, SIoU=SIoU)inds = torch.nonzero(iou <= iou_thres).reshape(-1)B = B[inds + 1]return torch.tensor(keep)def soft_nms(bboxes, scores, iou_thresh=0.5, sigma=0.5, score_threshold=0.25):order = scores.argsort(descending=True).to(bboxes.device)keep = []while order.numel() > 1:if order.numel() == 1:keep.append(order[0])breakelse:i = order[0]keep.append(i)iou = bbox_iou(bboxes[i], bboxes[order[1:]]).squeeze()idx = (iou > iou_thresh).nonzero().squeeze()if idx.numel() > 0:iou = iou[idx]new_scores = torch.exp(-torch.pow(iou, 2) / sigma)scores[order[idx + 1]] *= new_scoresnew_order = (scores[order[1:]] > score_threshold).nonzero().squeeze()if new_order.numel() == 0:breakelse:max_score_index = torch.argmax(scores[order[new_order + 1]])if max_score_index != 0:new_order[[0, max_score_index],] = new_order[[max_score_index, 0],]order = order[new_order + 1]return torch.LongTensor(keep)

然后,解决报错提示,需要导入下列代码:

from utils.metrics import box_iou, fitness, bbox_iou

最后,在utils / general.py中找到non_max_suppression函数(大约885行左右),将non_max_suppression函数中的代码:

替换为:

 i = NMS(boxes, scores, iou_thres, class_nms='EIoU')

💥💥步骤7:修改默认参数

train.py文件中找到parse_opt函数,然后将第二行 '--cfg的default改为 'models/yolov5s_SE_ENMS.yaml',然后就可以开始进行训练了。🎈🎈🎈 

结束语:关于更多YOLOv5学习知识,可参考专栏:《YOLOv5:从入门到实战》🍉 🍓 🍑 🍈 🍌 🍐

这篇关于YOLOv5改进 | 添加SE注意力机制 + 更换NMS之EIoU-NMS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426043

相关文章

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2

Nginx之upstream被动式重试机制的实现

《Nginx之upstream被动式重试机制的实现》本文主要介绍了Nginx之upstream被动式重试机制的实现,可以通过proxy_next_upstream来自定义配置,具有一定的参考价值,感兴... 目录默认错误选择定义错误指令配置proxy_next_upstreamproxy_next_upst

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取