四边形不等式优化DP

2023-11-26 01:36
文章标签 dp 优化 不等式 四边形

本文主要是介绍四边形不等式优化DP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 四边形不等式内容
    • [HNOI2008]玩具装箱
      • 解析
      • 代码实现
    • 参考资料

四边形不等式内容

TODO

[HNOI2008]玩具装箱

解析

  • 满足四边形不等式,决策具有单调性. 对于两个位置 i , j i, j i,j, 对应的最优决策点一定有 o p t [ i ] < = o p t [ j ] opt[i] <= opt[j] opt[i]<=opt[j]
  • 代码实现
    • 需要有一个队列,这里我们使用c++里的双端队列( d e q u e deque deque). 因为需要在队尾插入和弹出,队首弹出的操作.
    • 初始化时,队列里只有一个元素, 比如本题中区间 [ 1 , n ] [1, n] [1,n], 决策点为 0 0 0. 这个对所有的位置 [ 1 , n ] [1, n] [1,n]都是合法的一个决策
    • 每次插入决策 x x x的时候,从队尾开始判断,如果当前的节点的区间的开始位置决策 x x x更优,就弹出队尾,一直这么做.
    • 接上一步, 于是就找到了一个节点(当前队尾): 对应的区间开始位置 x x x不优,结束位置 x x x更优。所以存在一个临界点,我们二分就是要找这么一个位置 p o s pos pos. [ p o s , n ] [pos, n] [pos,n]这部分 x x x更优,其他位置不变.
    • 主函数循环部分,我们维持队列的区间都是还未确定最优决策的部分。
    • 主函数循环部分,当循环到位置 i i i时候,由于我们已经考虑过小于 i i i的所有决策,因此对于位置 i i i,队首的决策就是位置 i i i的最优决策.

代码实现

#include <bits/stdc++.h>
using namespace std;#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endifconst int N = 5e4 + 5;typedef long long LL;int n, L;
// 原数组,以及前缀和
vector<LL> a, sum;
// dp[i]: 前i个玩具的最小费用. dp[i] = min(dp[j] + (s[i] - s[j] + i - j - 1 - L)^2), 0 <= j < i
vector<LL> dp;
// f[i]的最优决策点是谁, 也就是f[i]取得最小值的时候对应的上面的式子中的j. opt[i] = j.
vector<int> op;struct Node {int l, r, c;Node(int _l, int _r, int _c): l(_l), r(_r), c(_c){}
};// 存在插入队尾,弹出队首,弹出队尾三种操作,因此我们使用deque
deque<Node> q;// dp方程: f[j] = f[i] + (x - L) ^ 2
inline LL val(int j, int i) {LL s = sum[i] - sum[j] + i - j - 1 - L;return dp[j] + 1LL * s * s;
}// 用决策x更新
void insert(int x) {// pos表示能更新的那一段的开始位置, 结束位置一定是nint pos = n + 1; // 临界点// 找到x能更新的队列,一定是末尾的一段// 队列里队尾的元素. 看决策x是否是更优的决策. 满足'<='意味着x更优while (q.size() && val(x, q.back().l) <= val(q.back().c, q.back().l)) {pos = q.back().l; // 更新pos: [q,back().l, q.back().r] 这一段肯定x更优q.pop_back();}// 找到了这个区间. 这个区间的右边界x更优,左边界x不优秀. 我们二分寻找临界点在哪里if (q.size() && val(x, q.back().r) <= val(q.back().c, q.back().r)) {int l = q.back().l, r = q.back().r;while (l < r) {int mid = l + r >> 1;if (val(x, mid) <= val(q.back().c, mid)) r = mid; // 对于mid这个点, x的决策更优, 临界点在左边 -> [l, mid]else l = mid + 1; // mid这个点,x不优. 那么临界点在右半部分 -> [mid + 1, r]}// 结束循环时,r是使x成为最优决策的一段的起始位置pos = r;q.back().r = r - 1;}// 说明存在某些位置x的决策比当前队列的优. 也就是进入过上面的代码.if (pos != n + 1) q.push_back(Node(pos, n, x));
}int main() {cin >> n >> L;a = sum = dp = vector<LL>(n + 1, 0);op = vector<int>(n + 1, 0);for (int i = 1; i <= n; i++) cin >> a[i], sum[i] = sum[i - 1] + a[i];q.push_back(Node(1, n, 0)); // 一开始队列只有一个元素,表示[1, n]所有的最优决策点都是0for (int i = 1; i <= n; i++) {// 队头的决策点就是当前i的最优决策int opt = q.front().c;dp[i] = val(opt, i);op[i] = opt;// 弹出已经无用的决策if (q.front().r == i) q.pop_front();q.front().l = i + 1;// 插入当前决策,并用决策i去更新 [i + 1, n]的最优决策insert(i);}cout << dp[n] << endl;return 0;
}

参考资料

  • OIWIKI
  • 洛谷日报

这篇关于四边形不等式优化DP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/424930

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上