ADRC自抗扰控制原理

2023-11-25 13:52
文章标签 原理 控制 自抗扰 adrc

本文主要是介绍ADRC自抗扰控制原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写目录标题

    • TD跟踪微分器
    • ESO
    • NLSEF
    • 后续把公式的核心原理分析一下

参考链接:ADRC自抗扰控制,有手就行

ADRC是升级版的PID,由TD(跟踪微分器),ESO(扩张状态观测器),NLSEF(非线性控制律)。
ADRC的控制框图

其中TD主要是为了防止目标值突变而安排的过渡过程,ADRC的灵魂在于ESO,NLSEF则是改良PID直接线性加权(输出=比例+积分+微分)而引进的非线性控制律,使其更符合非线性系统。

TD跟踪微分器

在这里插入图片描述
在c++中的实现为:
fhan函数

#include <iostream>
#include <cmath>float sign(float x)
{if(x>0)return 1;else if(x<0)return -1;elsereturn 0;
}float fhan(float x1,float x2,float r,float h)float deltaa  =0,deltaa0 =0,y       =0,a0      =0,a       =0,fhan    =0;deltaa = r*h;deltaa0 = deltaa*h;y=x1+x2*h;a0 = sqrtf(deltaa*deltaa+8*r*fabsf(y));if(fabsf(y)<=deltaa0)a=x2+y/h;elsea=x2+0.5*(a0-deltaa)*sign(y);if(fabsf(a)<=deltaa)fhan = -r*a/deltaa;elsefhan = -r*sign(a);return fhan;
}

ESO

在这里插入图片描述
c++代码为:

/*******************************fal函数**********************************/
float fal(float e,float alpha,float delta)
{float result = 0,fabsf_e = 0;fabsf_e = fabsf(e);if(delta>=fabsf_e)result = e/powf(delta,1.0-alpha);else //if(delta<fabsf_e)result = powf(fabsf_e,alpha)*sign(e);return result;     
}

NLSEF

在这里插入图片描述
反应到程序上就是:

  u0 = belta1*fal(e1,alpha1,delta) + belta2*fal(e2,alpha2,delta);//其中0<alpha1<1<alpha2u = u0 - z3/b;return u;

后续把公式的核心原理分析一下

然后就是参数整定的过程:
  参数整定的规律是先将TD参数整定好,再整定ESO和NLSEF。
  TD的参数整定是最简单的,观测v1的输出和输入v0的线性,其跟随的快慢并没有规定一定要多快多慢,取决于你想要的效果。TD参数只有两个:快速因子r 和滤波因子h 。其中,r 与跟踪速度呈正相关,然而,随之带来的是噪声放大的副作用;h与滤波效果呈正相关,但当h增大时,跟踪信号的相位损失也会随之增加。滤波因子经常取值为ADRC控制周期,比如1ms调用一次,h就是0.001,这也不是死定的,可以根据自己的效果做细微调整。
ESO共有b、delta、belta01、belta02、belta03共5个参数,其中delta取值范围在5h<=delta<=10h,h为ADRC控制周期。参数整定可以先将b定下来,比如取1或者2(最好还是能够知道你的二阶系统系数),然后先后调整belta01、belta02、belta03,观测z1能不能够很好的跟随反馈y,如果是,那么大概参数就调好了;如果不是,可以改动一下b,还是不行的话就得认认真真的检测一下反馈y是不是出了什么问题,比如变量数据类型转换有没有做好。如果懂得自己在输出中加入随机数(白噪声),注意幅值不能过大,观测一下z3是不是能够很好的观测到随机扰动。若以上两个条件都成立,那么ADRC就几乎被整定好了。
  NLSEF参数有alpha1,alpha2,belta1,belta2四个,其中0<alpha1<1<alpha2。belta1和belta2则视效果而定,通常ESO和NLSEF一起调,在整定ESO参数时,可以先把delta1和delta2定为1,再调ESO,待ESO有一定效果后,反复调整ESO参数无果,可以加入NLSEF参数整定,取得更好的效果。

这篇关于ADRC自抗扰控制原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423928

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring如何使用注解@DependsOn控制Bean加载顺序

《Spring如何使用注解@DependsOn控制Bean加载顺序》:本文主要介绍Spring如何使用注解@DependsOn控制Bean加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录1.javascript 前言2. 代码实现总结1. 前言默认情况下,Spring加载Bean的顺

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.