【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》

本文主要是介绍【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有感而发(胡说八道):隐蔽通信或其他方向就是一个大坑(无贬义),几个大牛学者把论文当锄头,把这坑一点点挖大,挖完觉得差不多了,换一个位置继续挖。但前面的坑还在呀,于是后来人就前赴后继,争先恐后的在坑里站住一个位置,等填完了,上岸了,累了,也就这样了。
调侃几句哈哈,回到这篇论文。本文提到了中继(Relay),中继其实不算一个新概念,在无线通信中就被广泛应用,那么本文将中继引入到隐蔽通信中,结果是怎样的呢?一起来看看把。

论文题目: Relaying via Cooperative Jamming in Covert Wireless Communications
论文链接: [arXiv论文地址] 暂无
        ResearchGate论文地址

目录

    • 0. 中继的一些知识
    • 1. 系统模型
    • 2. 最优检测阈值
    • 3. 中断概率

0. 中继的一些知识

    根据定义,中继的接收端接收源节点发送的无线信号,经过一系列处理后再由中继发送端发送至目的节点,实质上相当于一个“无线收发器”,而中继通信技术,指的是在蜂窝移动网络部署中继节点,来协助基站和用户之间通信的一门技术,与基站本身相比,中继节点有功耗低、易部署、价格低等优点,在很多种不同的环境中应用中继通信技术会产生许多增益。

    中继具有多种协议,根据中继如何处理来自源节点的信号,大致可以分为放大转发(Amplify-and-Forward,AF)和解码转发(Decode-and-Forward ,DF)。本文使用的协议是放大转发协议,指的是使用 AF 协议的中继对来自源节点的发送信号进行量化并采用放大因子进行简单的放大,并且将量化后的信号转发至目的节点,这里的放大因子是和接收功率成反比的。相当于一个简单的模拟变换。

1. 系统模型


  • 图1 具有中继的隐蔽通信系统模型图
  • \newline

        这个模型中,Alice 是信息源,她想给 Bob 发送信息,但是无法直接接收(可能由于两者相距太远,信道强度弱)。中继实际上是一个双工器件,他接收到来自 Alice 的信息后,经过一个放大器直接再转发出去。如果 Alice 没有发送消息,那么中继转发放大的只有噪声,此时中继退化为一个干扰器(Jammer)。Willie 的功能没有变化,即通过接收到的信号功率,来判断 Alice 是否发送了消息。中继接收到的信息可以表示为

    y r ( i ) = h a r P a x a ( i ) + n r ( i ) y_r(i) = h_{ar}\sqrt{P_a}x_a(i) + n_r(i) yr(i)=harPa xa(i)+nr(i)

    经过转发放大后,中继发射的信号表示为

    x r ( i ) = A r y r ( i ) x_r(i) = \sqrt{A_r}y_r(i) xr(i)=Ar yr(i)

    其中 A r A_r Ar 是中继放大系数。

        为了迷惑 Willie,本文假设中继的发射功率服从均匀分布(也有别的论文里假设 Alice 的发射功率服从均匀分布,原理都差不多),虽然 P r P_r Pr 的概率分布是所有用户都知道的,但是每一个间隙里的值对于 Willie 来说是未知的

    f P r ( p ) = { 1 P max ⁡ , if  0 ≤ p ≤ P max ⁡ 0 , otherwise  f_{P_{r}}(p)=\left\{\begin{array}{ll} \frac{1}{P_{\max }}, & \text { if } \quad 0 \leq p \leq P_{\max } \\ 0, & \text { otherwise } \end{array}\right. fPr(p)={Pmax1,0, if 0pPmax otherwise 

    那么 Willie 接收的到信号 y w ( i ) y_w(i) yw(i) 服从以下分布
    { C N ( 0 , ∣ h r w ∣ 2 P r + σ w 2 ) , H 0 C N ( 0 , ∣ h r w ∣ 2 P r + ∣ h a w ∣ 2 P a + σ w 2 ) , H 1 \left\{\begin{array}{ll} \mathcal{C} \mathcal{N}\left(0,\left|h_{r w}\right|^{2} P_{r}+\sigma_{w}^{2}\right), & H_{0} \\ \mathcal{C} \mathcal{N}\left(0,\left|h_{r w}\right|^{2} P_{r}+\left|h_{a w}\right|^{2} P_{a}+\sigma_{w}^{2}\right), & H_{1} \end{array}\right. CN(0,hrw2Pr+σw2),CN(0,hrw2Pr+haw2Pa+σw2),H0H1

    2. 最优检测阈值

        类似的,根据 P F A \mathbb{P}_{FA} PFA P M D \mathbb{P}_{MD} PMD 可以推导出最优阈值,可利用分段函数,把 P F A \mathbb{P}_{FA} PFA P M D \mathbb{P}_{MD} PMD 的值罗列出来,详细可见原文。该阈值下的最小检测错误概率表示为

    P E ∗ = 1 − ∣ h a w ∣ 2 P a ∣ h r w ∣ 2 P m a x \mathbb{P}_E^* = 1- \frac{|h_{aw}|^2P_a}{|h_{rw}|^2 P_{max}} PE=1hrw2Pmaxhaw2Pa

    P E ∗ \mathbb{P}_E^* PE 的值会被 P a P_a Pa P m a x P_{max} Pmax 共同影响,如果 P m a x → ∞ P_{max} \rightarrow \infty Pmax,则 P E ∗ → 1 \mathbb{P}_E^* \rightarrow 1 PE1;如果 P a P_a Pa 的值很小,则 Willie 会很难检测到,但是这会很大程度上限制 Alice 到 Bob 的信息传输速率。因此 P a P_a Pa 的取值需要优化。

        P E ∗ \mathbb{P}_E^* PE 中有两个随机变量 h a w h_{aw} haw h r w h_{rw} hrw,计算其期望,得到 P ˉ E ∗ \bar\mathbb{P}_E^* PˉE,需要满足

    P ˉ E ∗ ≥ 1 − ϵ \bar\mathbb{P}_E^* \ge 1- \epsilon PˉE1ϵ

    3. 中断概率

        首先考虑 Alice 到 Bob 的中断概率,即 δ a b \delta_{ab} δab

    δ a b = P r [ S N R b < 2 R a b − 1 ] = P r [ P r P a ∣ h a r ∣ 2 ∣ h r b ∣ 2 P r ∣ h r b ∣ 2 + P a ∣ h a r ∣ 2 + 1 < 2 R a b − 1 ] = 1 − 2 Δ R B 1 K 1 ( 2 Δ R B 1 ) exp ⁡ ( − Δ R C 1 ) \begin{aligned} \delta_{ab} = &{\rm Pr}[ {\rm SNR}_b < 2^{R_{ab}}-1] \\ = & {\rm Pr} \Big[ \frac{P_{r} P_{a}\left|h_{a r}\right|^{2}\left|h_{r b}\right|^{2}}{P_{r}\left|h_{r b}\right|^{2}+P_{a}\left|h_{a r}\right|^{2}+1} < 2^{R_{ab}}-1 \Big] \\ = & 1-2 \Delta_{R} \sqrt{B_{1}} K_{1}\left(2 \Delta_{R} \sqrt{B_{1}}\right) \exp \left(-\Delta_{R} C_{1}\right) \end{aligned} δab===Pr[SNRb<2Rab1]Pr[Prhrb2+Pahar2+1PrPahar2hrb2<2Rab1]12ΔRB1 K1(2ΔRB1 )exp(ΔRC1)

    其中

    Δ R ≜ 2 R a b − 1 , B 1 ≜ λ a r λ r b P a P r , C 1 ≜ λ a r P a + λ r b P r \Delta_{R} \triangleq 2^{R_{a b}}-1, \quad B_{1} \triangleq \frac{\lambda_{a r} \lambda_{r b}}{P_{a} P_{r}}, \quad C_{1} \triangleq \frac{\lambda_{a r}}{P_{a}}+\frac{\lambda_{r b}}{P_{r}} ΔR2Rab1,B1PaPrλarλrb,C1Paλar+Prλrb

    有效的隐蔽速率可以表示为 R c = R a b ( 1 − δ a b ) R_c = R_{ab}(1- \delta_{ab}) Rc=Rab(1δab),如果想要最大化 R c R_c Rc,则需要最小化 δ a b \delta_{ab} δab,注意到 δ a b \delta_{ab} δab P a P_a Pa 的单调递减函数,因此 P a P_a Pa 应该取最大值。同时 P ˉ E ∗ \bar\mathbb{P}_E^* PˉE P a P_a Pa 的单调递减函数,于是 P ˉ E ∗ = 1 − ϵ \bar\mathbb{P}_E^* = 1- \epsilon PˉE=1ϵ 的解就是 P a P_a Pa 的最优解。

    P a ∗ = λ r w P max ⁡ b ϵ λ a w ( 1 − b ϵ ) . P_{a}^{*}=\frac{\lambda_{r w} P_{\max } b^{\epsilon}}{\lambda_{a w}\left(1-b^{\epsilon}\right)}. Pa=λaw(1bϵ)λrwPmaxbϵ.

这篇关于【论文02】隐蔽通信中的中继应用《Relaying via Cooperative Jamming in Covert Wireless Communications》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422670

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav