【限时免费】20天拿下华为OD笔试之【前缀和】2023B-数字游戏【欧弟算法】全网注释最详细分类最全的华为OD真题题解

本文主要是介绍【限时免费】20天拿下华为OD笔试之【前缀和】2023B-数字游戏【欧弟算法】全网注释最详细分类最全的华为OD真题题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目描述与示例
    • 题目描述
    • 输入描述
    • 输出描述
    • 示例一
      • 输入
      • 输出
    • 示例二
      • 输入
      • 输出
      • 说明
  • 解题思路
    • 前缀和
    • 简单的数学推导
    • 哈希集合的使用
  • 代码
    • Python
    • Java
    • C++
    • 时空复杂度
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

题目描述与示例

题目描述

小明玩一个游戏。 系统发1+n张牌,每张牌上有一个整数。 第一张给小明,后n张按照发牌顺序排成连续的一行。

需要小明判断,后n张牌中,是否存在连续的若干张牌,其和可以整除小明手中牌上的数字。

输入描述

输入数据有多组,每组输入数据有两行,输入到文件结尾结束。

第一行有两个整数nm,空格隔开。m代表发给小明牌上的数字。

第二行有n个数,代表后续发的n张牌上的数字,以空格隔开。

输出描述

对每组输入,如果存在满足条件的连续若干张牌,则输出1;否则,输出0

备注

  • 1`` ``≤`` ``n`` ``≤`` ``1000
  • 1`` ``≤ 牌上的整数 ≤`` ``400000
  • 输入的数组,不多于1000
  • 用例确保输入都正确,不需要考虑非法情况。

示例一

输入

6 7
2 12 6 3 5 5

输出

1

示例二

输入

10 11
1 1 1 1 1 1 1 1 1 1

输出

0

说明

两组输入。

第一组小明牌的数字为7,再发了6张牌。第1、2两张牌教字和为14,可以整除7,输出1

第二组小明牌的数字为11,再发了10张牌,这10张牌数字和为10,无法整除11,输出0

解题思路

前缀和

本题需要用到前缀和的概念。

  • 对于一个给定的数列A ,它的前缀和数列SS[i+1]表示从第1个元素到第i个元素的总和。
  • 假设nums是一个int型列表,形如sum(nums[0:i+1])就是从索引0对应的元素开始,累加到索引i对应的元素的前缀和。
  • 譬如nums = [1, 2, 3, 4],那么其前缀和列表即为pre_sum_lst = [0, 1, 3, 6, 10]

前缀和的作用是可以在O(1)的时间复杂度下快速地计算出某段连续子数组的和。即

sum(nums[i:j]) = pre_sum_lst[j] - pre_sum_lst[i]

譬如对于上述nums = [1, 2, 3, 4]而言,如果想快速计算出子数组nums[1:4] = [2, 3, 4]的结果,只需要计算pre_sum_lst[4] - pre_sum_lst[1] = 10 - 1 = 9即为答案。

前缀和的作用也可以解释,为什么我们会把0也视为一个前缀和并且放在前缀和列表的第一个位置。由于设置了pre_sum_lst[0] = 0,那么pre_sum_lst[i] - pre_sum_lst[0] = sum(nums[:i]),才能够得到起始位置为原数组nums中第一个元素的连续子数组的和。

简单的数学推导

假设连续子数组nums[i:j]的和为A,由上述关于前缀和的定义可知

A = pre_sum_lst[j] - pre_sum_lst[i]

假设A是符合题意的连续子数组和(此时应该输出1作为结果),那么存在

A % m == 0

成立,即

(pre_sum_lst[j] - pre_sum_lst[i]) % m == 0

成立。打开括号并移项,可以得到

pre_sum_lst[j] % m == pre_sum_lst[i] % m

成立。

因此,我们只需要找到两个前缀和pre_sum_lst[i]pre_sum_lst[j],能够满足上述式子,就可以说明存在符合题意的连续子数组了。

哈希集合的使用

在本题中,只需要判断能否找到一个满足题意的连续子数组,显然下标的具体值并不重要。故我们可以直接使用一个哈希集合pre_sum_set来储存所有的前缀和对m求余的结果,而不用考虑下标。

我们可以在一个循环中对前缀和进行计算和判断,其具体结果如下:

  1. 计算包含了i位置元素的前缀和pre_sum
  2. 计算当前前缀和对m的求余结果pre_sum % m
  3. 判断求余结果pre_sum % m是否位于哈希集合中,若
    1. 存在,则说明在此之前存在某个前缀和对m求余可以得到一样的结果。退出循环,输出1
    2. 不存在,继续循环
  4. 如果在上一步中没有退出循环,则将pre_sum % m存入哈希集合pre_sum_set

将该核心逻辑转化为代码即为

for num in nums:pre_sum += numif pre_sum % m in pre_sum_set:isFind = Truebreakpre_sum_set.add(pre_sum % m)

如果本题不仅要判断能否找到符合要求的连续子数组,还对题目做如下修改:

  1. 输出所有符合要求的子数组的起始坐标和结束坐标
  2. 输出符合要求的最长子数组的长度
  3. 输出符合要求的最短子数组的长度
  4. 输出所有符合要求的子数组的数目

那么代码逻辑应该如何修改?

其中,第四种问法等价于LeetCode974. 可被K整除的子数组

代码

Python

# 题目:2023B-数字游戏
# 分值:100
# 作者:闭着眼睛学数理化
# 算法:哈希集合+前缀和
# 代码有看不懂的地方请直接在群上提问# n为其他牌的数目,m为小明手上的牌
n, m = map(int, input().split())
# 输入剩余n张牌
nums = list(map(int, input().split()))# 设置一个集合,用来储存所有前缀和对m的求余结果
pre_sum_set = set()
# 前缀和0始终可以取得到,即不选取任何一个数字,0 % m = 0,在集合中储存0
pre_sum_set.add(0)
# 初始化前缀和为0
pre_sum = 0
# 初始化标志,表示是否找到一段连续的数组可以整除
isFind = Falsefor num in nums:# 前缀和加上numpre_sum += num# 如果pre_sum除以m后的余数位于pre_sum_set中# 说明在当前pre_sum之前存在一个前缀和k,# 存在 pre_sum % m == k % m 成立# 显然上式等价于 (pre_sum - k) % m == 0# 即位于pre_sum和k之间的这一段连续的数组和能够整除mif pre_sum % m in pre_sum_set:isFind = Truebreak# 如果没有进入上述if,则需要把pre_sum % m的结果储存入集合pre_sum_set中pre_sum_set.add(pre_sum % m)# 根据isFind的结果,输出数字0或1
print(int(isFind))

Java

import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();int[] nums = new int[n];for (int i = 0; i < n; i++) {nums[i] = scanner.nextInt();}Set<Integer> preSumSet = new HashSet<>();preSumSet.add(0);int preSum = 0;boolean isFind = false;for (int num : nums) {preSum += num;if (preSumSet.contains(preSum % m)) {isFind = true;break;}preSumSet.add(preSum % m);}System.out.println(isFind ? 1 : 0);}
}

C++

#include <iostream>
#include <unordered_set>
#include <vector>
using namespace std;int main() {int n, m;cin >> n >> m;vector<int> nums(n);for (int i = 0; i < n; i++) {cin >> nums[i];}unordered_set<int> preSumSet;preSumSet.insert(0);int preSum = 0;bool isFind = false;for (int num : nums) {preSum += num;if (preSumSet.count(preSum % m)) {isFind = true;break;}preSumSet.insert(preSum % m);}cout << (isFind ? 1 : 0) << endl;return 0;
}

时空复杂度

时间复杂度:O(n)。仅需一次遍历数组。

空间复杂度:O(n)。哈希集合所占空间。


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于【限时免费】20天拿下华为OD笔试之【前缀和】2023B-数字游戏【欧弟算法】全网注释最详细分类最全的华为OD真题题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421596

相关文章

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的