xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析

2023-11-24 07:08

本文主要是介绍xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于hifpga.com

XILINX的 serdes GT IP真的是够复杂的,生成的例子也是复杂,而且为了适配各种情况,代码里很多冗余的东西,发送部分比较简单 ,接收部分有点繁琐,我做了点注释,这里的只做的GTP的,GTX的自己看吧。 

///
//   ____  ____ 
//  /   /\/   / 
// /___/  \  /    Vendor: Xilinx 
// \   \   \/     Version : 3.6
//  \   \         Application : 7 Series FPGAs Transceivers Wizard  
//  /   /         Filename : gtwizard_0_gt_frame_check.v
// /___/   /\      
// \   \  /  \ 
//  \___\/\___\ 
//
//
// Module gtwizard_0_GT_FRAME_CHECK
// Generated by Xilinx 7 Series FPGAs Transceivers Wizard
// 
// 
// (c) Copyright 2010-2012 Xilinx, Inc. All rights reserved.
// 
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
// 
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
// 
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
// 
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES. `timescale 1ns / 1ps
`define DLY #1//***********************************Entity Declaration************************
(* DowngradeIPIdentifiedWarnings="yes" *)
module gtwizard_0_GT_FRAME_CHECK #
(// parameter to set the number of words in the BRAMparameter   RX_DATA_WIDTH            =  64,parameter   RXCTRL_WIDTH             =  2,parameter   WORDS_IN_BRAM            =  512,parameter   CHANBOND_SEQ_LEN         =  1,parameter   COMMA_DOUBLE             =  16'hf628,parameter   START_OF_PACKET_CHAR     =  64'h00000000000000fb
)                            
(// User Interfaceinput  wire [(RX_DATA_WIDTH-1):0] RX_DATA_IN,input  wire [(RXCTRL_WIDTH-1):0] RXCTRL_IN,output reg          RXENPCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到plus COMMA模式时进行处理。output reg          RXENMCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到minus COMMA模式时进行处理。 output reg          RX_ENCHAN_SYNC_OUT,     // 未用,驱动mgt的enchansync端口进行通道绑定input  wire         RX_CHANBOND_SEQ_IN,     // 输入通道绑定序列,不绑定时为0// Control Interfaceinput  wire         INC_IN,             // 未用output wire         INC_OUT,            // 非独立的收发测试时输出已开始进行COMMA检测,指示发送端地址递增output wire         PATTERN_MATCHB_OUT, // COMMA不匹配input  wire         RESET_ON_ERROR_IN,  // 通过将PATTERN_MATCHB_OUT输出给外部,由此产生出错后的复位// Error Monitoringoutput wire [7:0]   ERROR_COUNT_OUT,    // 错误数// Track Dataoutput wire         TRACK_DATA_OUT,     // 指示接收到的数据是否符合预期output wire RX_SLIDE,                   // 在对齐时要求GT滑动// System Interfaceinput  wire         USER_CLK,input  wire         SYSTEM_RESET 
);//***************************Internal Register Declarations******************** reg             reset_on_error_in_r;
reg             reset_on_error_in_r2;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r2;reg             begin_r;
reg             data_error_detected_r;
reg     [8:0]   error_count_r;
reg             error_detected_r;
reg     [9:0]   read_counter_i;    reg     [79:0] rom [0:511];    reg     [(RX_DATA_WIDTH-1):0] rx_data_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r_track;reg             start_of_packet_detected_r;    
reg             track_data_r;
reg             track_data_r2;
reg             track_data_r3;
reg     [79:0]  rx_data_ram_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r2;reg     [(RX_DATA_WIDTH-1):0] rx_data_r3;reg     [(RX_DATA_WIDTH-1):0] rx_data_r4;reg     [(RX_DATA_WIDTH-1):0] rx_data_r5;reg     [(RX_DATA_WIDTH-1):0] rx_data_r6;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r2;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r3;reg             rx_chanbond_seq_r;
reg             rx_chanbond_seq_r2;
reg             rx_chanbond_seq_r3; reg             idle_slip_r;reg             slip_assert_r;reg             wait_state_r;reg             bit_align_r;reg     [6:0]   wait_before_slip_r;reg     [6:0]   wait_before_init_r;    reg     [1:0]   sel;
//*********************************Wire Declarations***************************wire    [(RX_DATA_WIDTH-1):0] bram_data_r;
wire            error_detected_c;
wire            next_begin_c;
wire            next_data_error_detected_c;
wire            next_track_data_c;
wire            start_of_packet_detected_c;
wire            chanbondseq_in_data;
wire            input_to_chanbond_data_i;
wire            input_to_chanbond_reg_i;
wire    [(CHANBOND_SEQ_LEN-1):0]  rx_chanbond_reg;
wire            rxdata_or;
wire            count_slip_complete_c;
wire            next_idle_slip_c;
wire            next_slip_assert_c;
wire            wait_state_c;wire    [(RX_DATA_WIDTH-1):0]  rx_data_aligned;
wire            rx_data_has_start_char_c;
wire            tied_to_ground_i;
wire    [31:0]  tied_to_ground_vec_i;
wire            tied_to_vcc_i;//*********************************Main Body of Code***************************//_______________________  Static signal Assigments _______________________   assign tied_to_ground_i             = 1'b0;assign tied_to_ground_vec_i         = 32'h0000;assign tied_to_vcc_i                = 1'b1;//___________ synchronizing the async reset for ease of timing simulation ________always@(posedge USER_CLK)beginsystem_reset_r <= `DLY SYSTEM_RESET;    system_reset_r2 <= `DLY system_reset_r; end   always@(posedge USER_CLK)beginreset_on_error_in_r <= `DLY RESET_ON_ERROR_IN;    reset_on_error_in_r2 <= `DLY reset_on_error_in_r;    end   //______________________ Register RXDATA once to ease timing ______________   always @(posedge USER_CLK)beginrx_data_r  <= `DLY    RX_DATA_IN;rx_data_r2 <= `DLY    rx_data_r;end always @(posedge USER_CLK)beginrxctrl_r  <= `DLY    RXCTRL_IN;end//________________________________ State machine __________________________    // State registersalways @(posedge USER_CLK)if(system_reset_r2){begin_r,track_data_r,data_error_detected_r}  <=  `DLY    3'b100;elsebeginbegin_r                <=  `DLY    next_begin_c;track_data_r           <=  `DLY    next_track_data_c;data_error_detected_r  <=  `DLY    next_data_error_detected_c;end// Next state logicassign  next_begin_c                =   (begin_r && !start_of_packet_detected_r) // 产生启动请求信号,在该信号复位为高后且未收到已开始数据检测的指示时保持为高,或数据出错时|| data_error_detected_r ;assign  next_track_data_c           =   (begin_r && start_of_packet_detected_r)  // 产生检测数据跟踪请求,在启动为高后且收到开始检测到有效数据的指示时保持为高,或者已启动数据跟踪且未出错时|| (track_data_r && !error_detected_r);assign  next_data_error_detected_c  =   (track_data_r && error_detected_r);      // 已启动跟踪,且检测到了错误                        assign  start_of_packet_detected_c  =   rx_data_has_start_char_c;                // 已开始检测到有效数据always @(posedge USER_CLK) start_of_packet_detected_r    <=   `DLY  start_of_packet_detected_c;  // Registering for timingalways @(posedge USER_CLK) track_data_r2    <=   `DLY  track_data_r;  always @(posedge USER_CLK) track_data_r3    <=   `DLY  track_data_r2; //______________________________ Capture incoming data ____________________    // 根据COMMA出现的位置将32b重新对齐always @(posedge USER_CLK)beginif(system_reset_r2)    rx_data_r3 <= 'h0;else beginif(sel == 2'b01)beginrx_data_r3   <=  `DLY    {rx_data_r[(RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):RX_DATA_WIDTH/4]};  endelse if(sel == 2'b10)beginrx_data_r3   <=  `DLY    {rx_data_r[(2*RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):2*RX_DATA_WIDTH/4]};  endelse if(sel == 2'b11)beginrx_data_r3   <=  `DLY    {rx_data_r[(3*RX_DATA_WIDTH/4 - 1):0],rx_data_r2[(RX_DATA_WIDTH-1):3*RX_DATA_WIDTH/4]};  endelse rx_data_r3  <=  `DLY    rx_data_r2;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrx_data_r4      <=  `DLY   'h0;rx_data_r5      <=  `DLY   'h0;rx_data_r6      <=  `DLY   'h0;rx_data_r_track <=  `DLY   'h0;endelsebeginrx_data_r4      <=  `DLY    rx_data_r3;rx_data_r5      <=  `DLY    rx_data_r4;rx_data_r6      <=  `DLY    rx_data_r5;rx_data_r_track <=  `DLY    rx_data_r6;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrxctrl_r2      <=  `DLY   'h0;rxctrl_r3      <=  `DLY   'h0;endelsebeginrxctrl_r2      <=  `DLY   rxctrl_r;rxctrl_r3      <=  `DLY   rxctrl_r2;endendassign rx_data_aligned = rx_data_r3;//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet charalways @(posedge USER_CLK)beginrx_chanbond_seq_r  <=  `DLY    RX_CHANBOND_SEQ_IN;rx_chanbond_seq_r2 <=  `DLY    rx_chanbond_seq_r;rx_chanbond_seq_r3 <=  `DLY    rx_chanbond_seq_r2;endassign input_to_chanbond_reg_i  = rx_chanbond_seq_r2; //一直为0assign input_to_chanbond_data_i = tied_to_ground_i;//______________ Code for Bit Slipping Logic______________assign rxdata_or = |(rx_data_r|rx_data_r2|rx_data_r3); // 通道有收到数据// State registersalways @(posedge USER_CLK)if( (system_reset_r2 == 1'b1) | (wait_before_init_r[6] == 1'b0) | (rxdata_or == 1'b0) ){idle_slip_r,slip_assert_r,wait_state_r}  <=  `DLY    3'b100;elsebeginidle_slip_r            <=  `DLY    next_idle_slip_c;slip_assert_r          <=  `DLY    next_slip_assert_c;wait_state_r           <=  `DLY    wait_state_c;end// Next state logicassign  next_idle_slip_c            =   (idle_slip_r & bit_align_r) | (wait_state_r & count_slip_complete_c); // slip操作空闲信号,当复为后且bit已对齐时,或者已完成执行滑窗后的等待assign  next_slip_assert_c          =   (idle_slip_r & !bit_align_r);   // 继续执行slip,上一slip操作已完成,但bit仍未对齐assign  wait_state_c                =   (slip_assert_r) | (wait_state_r & !count_slip_complete_c); // slip请求已产生,但是等待操作还未完成,则持续等待//_______ Counter for waiting clock cycles after RXSLIDE________always @(posedge USER_CLK)beginif (!wait_state_r)wait_before_slip_r  <= `DLY  7'b000000;elsewait_before_slip_r  <= `DLY  wait_before_slip_r + 1'b1; // slip操作等待计时器end//_______ Counter for waiting clock cycles before starting RXSLIDE operation________//_______ Wait for 64 clock cycles to see if the RXDATA is already byte aligned. If not, start RXSLIDE operationalways @(posedge USER_CLK)begin	    if( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )wait_before_init_r <= `DLY    7'b0000000;else if (wait_before_init_r[6] == 1'b0) // 在启动接收前等待64clkwait_before_init_r <= `DLY    wait_before_init_r + 1'b1;endassign count_slip_complete_c = wait_before_slip_r[6];always @(posedge USER_CLK)beginif( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )   beginbit_align_r <= 1'b0;end else beginif( ({rx_data_r[23:0],rx_data_r2[31:24]} == START_OF_PACKET_CHAR) || ({rx_data_r[15:0],rx_data_r2[31:16]} == START_OF_PACKET_CHAR) || ({rx_data_r[7:0],rx_data_r2[31:8]} == START_OF_PACKET_CHAR) || (rx_data_r[31:0]== START_OF_PACKET_CHAR) )beginbit_align_r <= 1'b1; // 比较COMMA所有可能存在的4种情况以确定bit对齐endendend// Comma realignment logic might be needed. 4 levels of registering for RXDATA to meet timing// In 4 Byte scenario, when align_comma_word=1, Comma can appear on any of the four bytes.// { BYTE3 | BYTE2 | BYTE1 | BYTE0 } - Comma can appear on BYTE0/1/2/3// If Comma appears on BYTE1/2/3, RX_DATA is realigned so that Comma appears on BYTE0 in rx_data_r_trackalways @(posedge USER_CLK)beginif(reset_on_error_in_r2 || system_reset_r2)    sel <= 2'b00;else if (begin_r && !rx_chanbond_seq_r)begin// if Comma appears on BYTE3 ..if((rx_data_r[(RX_DATA_WIDTH - 1) : 3*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[3]) // rxctrl_r 指示COMMA出现的位置,并比较收的包头是否匹配sel <= 2'b11;        // if Comma appears on BYTE2 ..else if((rx_data_r[(3*RX_DATA_WIDTH/4 - 1):2*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[2])beginsel <= 2'b10;end// if Comma appears on BYTE1 ..else if((rx_data_r[(2*RX_DATA_WIDTH/4 - 1):RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[1])beginsel <= 2'b01;end// if Comma appears on BYTE0 ..else if((rx_data_r[(RX_DATA_WIDTH/4 - 1):0] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[0])beginsel <= 2'b00;endend      end//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet chargenvar i; generatefor (i=0;i<CHANBOND_SEQ_LEN ;i=i+1)begin:register_chan_seqif(i==0)FD rx_chanbond_reg_0  ( .Q (rx_chanbond_reg[i]), .D (input_to_chanbond_reg_i), .C(USER_CLK));elseFD rx_chanbond_reg_i  ( .Q (rx_chanbond_reg[i]), .D (rx_chanbond_reg[i-1]), .C(USER_CLK));endendgenerateassign chanbondseq_in_data = |rx_chanbond_reg || input_to_chanbond_data_i; // 未绑定始终为0assign rx_data_has_start_char_c = (rx_data_aligned[7:0] == START_OF_PACKET_CHAR[7:0]) && !chanbondseq_in_data && (|rxctrl_r3); // 只要对齐后的数据有一byte匹配//_____________________________ Assign output ports _______________________    //assign TRACK_DATA_OUT = track_data_r;assign RX_SLIDE = slip_assert_r; // 输出slip信号// Drive the enpcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the plus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENPCOMMADET_OUT   <=  `DLY    1'b0;else              RXENPCOMMADET_OUT   <=  `DLY    1'b1;// Drive the enmcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the minus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENMCOMMADET_OUT   <=  `DLY    1'b0;else              RXENMCOMMADET_OUT   <=  `DLY    1'b1;assign INC_OUT =  start_of_packet_detected_c;   assign PATTERN_MATCHB_OUT =  data_error_detected_r;// Drive the enchansync port of the mgt for channel bondingalways @(posedge USER_CLK)if(system_reset_r2)  RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b0;else              RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b1;//___________________________ Check incoming data for errors ______________//An error is detected when data read for the BRAM does not match the incoming dataassign  error_detected_c    =  track_data_r3 && (rx_data_r_track != bram_data_r); // 数据与ROM中不匹配//We register the error_detected signal for use with the error counter logicalways @(posedge USER_CLK)if(!track_data_r)  error_detected_r    <=  `DLY    1'b0;elseerror_detected_r    <=  `DLY    error_detected_c;  //We count the total number of errors we detect. By keeping a count we make it less likely that we will miss//errors we did not directly observe. always @(posedge USER_CLK)if(system_reset_r2)error_count_r       <=  `DLY    9'd0;else if(error_detected_r)error_count_r       <=  `DLY    error_count_r + 1;    //Here we connect the lower 8 bits of the count (the MSbit is used only to check when the counter reaches//max value) to the module outputassign  ERROR_COUNT_OUT =   error_count_r[7:0];localparam ST_LINK_DOWN = 1'b0;localparam ST_LINK_UP   = 1'b1;reg        sm_link      = ST_LINK_DOWN;reg [6:0]  link_ctr     = 7'd0;always @(posedge USER_CLK) beginif(!track_data_r)  sm_link  <= ST_LINK_DOWN;else       case (sm_link)// The link is considered to be down when the link counter initially has a value less than 67. When the link is// down, the counter is incremented on each cycle where all PRBS bits match, but reset whenever any PRBS mismatch// occurs. When the link counter reaches 67, transition to the link up state.ST_LINK_DOWN: beginif (error_detected_r !== 1'b0) beginlink_ctr <= 7'd0;endelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;elsesm_link <= ST_LINK_UP;endend// When the link is up, the link counter is decreased by 34 whenever any PRBS mismatch occurs, but is increased by// only 1 on each cycle where all PRBS bits match, up to its saturation point of 67. If the link counter reaches// 0 (including rollover protection), transition to the link down state.ST_LINK_UP: beginif (error_detected_r !== 1'b0) beginif (link_ctr > 7'd33) beginlink_ctr <= link_ctr - 7'd34;if (link_ctr == 7'd34)sm_link  <= ST_LINK_DOWN;endelse beginlink_ctr <= 7'd0;sm_link  <= ST_LINK_DOWN;endendelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;endendendcaseendassign TRACK_DATA_OUT = sm_link;//____________________________ Counter to read from BRAM __________________________    always @(posedge USER_CLK)if(system_reset_r2 ||  (read_counter_i == (WORDS_IN_BRAM-1)))beginread_counter_i   <=  `DLY    10'd0;endelse if (start_of_packet_detected_r && !track_data_r)beginread_counter_i   <=  `DLY    10'd0;endelsebeginread_counter_i  <=  `DLY    read_counter_i + 10'd1;end//________________________________ BRAM Inference Logic _____________________________    //Array slice from dat file to compare against receive data  
generate
if(RX_DATA_WIDTH==80)
begin : datapath_80assign bram_data_r      = rx_data_ram_r[(RX_DATA_WIDTH-1):0];
end
else
begin : datapath_16_20_32_40_64assign bram_data_r = rx_data_ram_r[(16+RX_DATA_WIDTH-1):16];
end 
endgenerate`ifdef SIMinitialbegin$readmemh("gt_rom_init_rx.dat",rom,0,511);endalways @(posedge USER_CLK)rx_data_ram_r <= `DLY  rom[read_counter_i];
`elsealways @(posedge USER_CLK)rx_data_ram_r <= 'haa5555aa;//`DLY  rom[read_counter_i];
`endif    endmodule           

 

这篇关于xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421476

相关文章

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的