xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析

2023-11-24 07:08

本文主要是介绍xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于hifpga.com

XILINX的 serdes GT IP真的是够复杂的,生成的例子也是复杂,而且为了适配各种情况,代码里很多冗余的东西,发送部分比较简单 ,接收部分有点繁琐,我做了点注释,这里的只做的GTP的,GTX的自己看吧。 

///
//   ____  ____ 
//  /   /\/   / 
// /___/  \  /    Vendor: Xilinx 
// \   \   \/     Version : 3.6
//  \   \         Application : 7 Series FPGAs Transceivers Wizard  
//  /   /         Filename : gtwizard_0_gt_frame_check.v
// /___/   /\      
// \   \  /  \ 
//  \___\/\___\ 
//
//
// Module gtwizard_0_GT_FRAME_CHECK
// Generated by Xilinx 7 Series FPGAs Transceivers Wizard
// 
// 
// (c) Copyright 2010-2012 Xilinx, Inc. All rights reserved.
// 
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
// 
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
// 
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
// 
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES. `timescale 1ns / 1ps
`define DLY #1//***********************************Entity Declaration************************
(* DowngradeIPIdentifiedWarnings="yes" *)
module gtwizard_0_GT_FRAME_CHECK #
(// parameter to set the number of words in the BRAMparameter   RX_DATA_WIDTH            =  64,parameter   RXCTRL_WIDTH             =  2,parameter   WORDS_IN_BRAM            =  512,parameter   CHANBOND_SEQ_LEN         =  1,parameter   COMMA_DOUBLE             =  16'hf628,parameter   START_OF_PACKET_CHAR     =  64'h00000000000000fb
)                            
(// User Interfaceinput  wire [(RX_DATA_WIDTH-1):0] RX_DATA_IN,input  wire [(RXCTRL_WIDTH-1):0] RXCTRL_IN,output reg          RXENPCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到plus COMMA模式时进行处理。output reg          RXENMCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到minus COMMA模式时进行处理。 output reg          RX_ENCHAN_SYNC_OUT,     // 未用,驱动mgt的enchansync端口进行通道绑定input  wire         RX_CHANBOND_SEQ_IN,     // 输入通道绑定序列,不绑定时为0// Control Interfaceinput  wire         INC_IN,             // 未用output wire         INC_OUT,            // 非独立的收发测试时输出已开始进行COMMA检测,指示发送端地址递增output wire         PATTERN_MATCHB_OUT, // COMMA不匹配input  wire         RESET_ON_ERROR_IN,  // 通过将PATTERN_MATCHB_OUT输出给外部,由此产生出错后的复位// Error Monitoringoutput wire [7:0]   ERROR_COUNT_OUT,    // 错误数// Track Dataoutput wire         TRACK_DATA_OUT,     // 指示接收到的数据是否符合预期output wire RX_SLIDE,                   // 在对齐时要求GT滑动// System Interfaceinput  wire         USER_CLK,input  wire         SYSTEM_RESET 
);//***************************Internal Register Declarations******************** reg             reset_on_error_in_r;
reg             reset_on_error_in_r2;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r2;reg             begin_r;
reg             data_error_detected_r;
reg     [8:0]   error_count_r;
reg             error_detected_r;
reg     [9:0]   read_counter_i;    reg     [79:0] rom [0:511];    reg     [(RX_DATA_WIDTH-1):0] rx_data_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r_track;reg             start_of_packet_detected_r;    
reg             track_data_r;
reg             track_data_r2;
reg             track_data_r3;
reg     [79:0]  rx_data_ram_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r2;reg     [(RX_DATA_WIDTH-1):0] rx_data_r3;reg     [(RX_DATA_WIDTH-1):0] rx_data_r4;reg     [(RX_DATA_WIDTH-1):0] rx_data_r5;reg     [(RX_DATA_WIDTH-1):0] rx_data_r6;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r2;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r3;reg             rx_chanbond_seq_r;
reg             rx_chanbond_seq_r2;
reg             rx_chanbond_seq_r3; reg             idle_slip_r;reg             slip_assert_r;reg             wait_state_r;reg             bit_align_r;reg     [6:0]   wait_before_slip_r;reg     [6:0]   wait_before_init_r;    reg     [1:0]   sel;
//*********************************Wire Declarations***************************wire    [(RX_DATA_WIDTH-1):0] bram_data_r;
wire            error_detected_c;
wire            next_begin_c;
wire            next_data_error_detected_c;
wire            next_track_data_c;
wire            start_of_packet_detected_c;
wire            chanbondseq_in_data;
wire            input_to_chanbond_data_i;
wire            input_to_chanbond_reg_i;
wire    [(CHANBOND_SEQ_LEN-1):0]  rx_chanbond_reg;
wire            rxdata_or;
wire            count_slip_complete_c;
wire            next_idle_slip_c;
wire            next_slip_assert_c;
wire            wait_state_c;wire    [(RX_DATA_WIDTH-1):0]  rx_data_aligned;
wire            rx_data_has_start_char_c;
wire            tied_to_ground_i;
wire    [31:0]  tied_to_ground_vec_i;
wire            tied_to_vcc_i;//*********************************Main Body of Code***************************//_______________________  Static signal Assigments _______________________   assign tied_to_ground_i             = 1'b0;assign tied_to_ground_vec_i         = 32'h0000;assign tied_to_vcc_i                = 1'b1;//___________ synchronizing the async reset for ease of timing simulation ________always@(posedge USER_CLK)beginsystem_reset_r <= `DLY SYSTEM_RESET;    system_reset_r2 <= `DLY system_reset_r; end   always@(posedge USER_CLK)beginreset_on_error_in_r <= `DLY RESET_ON_ERROR_IN;    reset_on_error_in_r2 <= `DLY reset_on_error_in_r;    end   //______________________ Register RXDATA once to ease timing ______________   always @(posedge USER_CLK)beginrx_data_r  <= `DLY    RX_DATA_IN;rx_data_r2 <= `DLY    rx_data_r;end always @(posedge USER_CLK)beginrxctrl_r  <= `DLY    RXCTRL_IN;end//________________________________ State machine __________________________    // State registersalways @(posedge USER_CLK)if(system_reset_r2){begin_r,track_data_r,data_error_detected_r}  <=  `DLY    3'b100;elsebeginbegin_r                <=  `DLY    next_begin_c;track_data_r           <=  `DLY    next_track_data_c;data_error_detected_r  <=  `DLY    next_data_error_detected_c;end// Next state logicassign  next_begin_c                =   (begin_r && !start_of_packet_detected_r) // 产生启动请求信号,在该信号复位为高后且未收到已开始数据检测的指示时保持为高,或数据出错时|| data_error_detected_r ;assign  next_track_data_c           =   (begin_r && start_of_packet_detected_r)  // 产生检测数据跟踪请求,在启动为高后且收到开始检测到有效数据的指示时保持为高,或者已启动数据跟踪且未出错时|| (track_data_r && !error_detected_r);assign  next_data_error_detected_c  =   (track_data_r && error_detected_r);      // 已启动跟踪,且检测到了错误                        assign  start_of_packet_detected_c  =   rx_data_has_start_char_c;                // 已开始检测到有效数据always @(posedge USER_CLK) start_of_packet_detected_r    <=   `DLY  start_of_packet_detected_c;  // Registering for timingalways @(posedge USER_CLK) track_data_r2    <=   `DLY  track_data_r;  always @(posedge USER_CLK) track_data_r3    <=   `DLY  track_data_r2; //______________________________ Capture incoming data ____________________    // 根据COMMA出现的位置将32b重新对齐always @(posedge USER_CLK)beginif(system_reset_r2)    rx_data_r3 <= 'h0;else beginif(sel == 2'b01)beginrx_data_r3   <=  `DLY    {rx_data_r[(RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):RX_DATA_WIDTH/4]};  endelse if(sel == 2'b10)beginrx_data_r3   <=  `DLY    {rx_data_r[(2*RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):2*RX_DATA_WIDTH/4]};  endelse if(sel == 2'b11)beginrx_data_r3   <=  `DLY    {rx_data_r[(3*RX_DATA_WIDTH/4 - 1):0],rx_data_r2[(RX_DATA_WIDTH-1):3*RX_DATA_WIDTH/4]};  endelse rx_data_r3  <=  `DLY    rx_data_r2;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrx_data_r4      <=  `DLY   'h0;rx_data_r5      <=  `DLY   'h0;rx_data_r6      <=  `DLY   'h0;rx_data_r_track <=  `DLY   'h0;endelsebeginrx_data_r4      <=  `DLY    rx_data_r3;rx_data_r5      <=  `DLY    rx_data_r4;rx_data_r6      <=  `DLY    rx_data_r5;rx_data_r_track <=  `DLY    rx_data_r6;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrxctrl_r2      <=  `DLY   'h0;rxctrl_r3      <=  `DLY   'h0;endelsebeginrxctrl_r2      <=  `DLY   rxctrl_r;rxctrl_r3      <=  `DLY   rxctrl_r2;endendassign rx_data_aligned = rx_data_r3;//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet charalways @(posedge USER_CLK)beginrx_chanbond_seq_r  <=  `DLY    RX_CHANBOND_SEQ_IN;rx_chanbond_seq_r2 <=  `DLY    rx_chanbond_seq_r;rx_chanbond_seq_r3 <=  `DLY    rx_chanbond_seq_r2;endassign input_to_chanbond_reg_i  = rx_chanbond_seq_r2; //一直为0assign input_to_chanbond_data_i = tied_to_ground_i;//______________ Code for Bit Slipping Logic______________assign rxdata_or = |(rx_data_r|rx_data_r2|rx_data_r3); // 通道有收到数据// State registersalways @(posedge USER_CLK)if( (system_reset_r2 == 1'b1) | (wait_before_init_r[6] == 1'b0) | (rxdata_or == 1'b0) ){idle_slip_r,slip_assert_r,wait_state_r}  <=  `DLY    3'b100;elsebeginidle_slip_r            <=  `DLY    next_idle_slip_c;slip_assert_r          <=  `DLY    next_slip_assert_c;wait_state_r           <=  `DLY    wait_state_c;end// Next state logicassign  next_idle_slip_c            =   (idle_slip_r & bit_align_r) | (wait_state_r & count_slip_complete_c); // slip操作空闲信号,当复为后且bit已对齐时,或者已完成执行滑窗后的等待assign  next_slip_assert_c          =   (idle_slip_r & !bit_align_r);   // 继续执行slip,上一slip操作已完成,但bit仍未对齐assign  wait_state_c                =   (slip_assert_r) | (wait_state_r & !count_slip_complete_c); // slip请求已产生,但是等待操作还未完成,则持续等待//_______ Counter for waiting clock cycles after RXSLIDE________always @(posedge USER_CLK)beginif (!wait_state_r)wait_before_slip_r  <= `DLY  7'b000000;elsewait_before_slip_r  <= `DLY  wait_before_slip_r + 1'b1; // slip操作等待计时器end//_______ Counter for waiting clock cycles before starting RXSLIDE operation________//_______ Wait for 64 clock cycles to see if the RXDATA is already byte aligned. If not, start RXSLIDE operationalways @(posedge USER_CLK)begin	    if( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )wait_before_init_r <= `DLY    7'b0000000;else if (wait_before_init_r[6] == 1'b0) // 在启动接收前等待64clkwait_before_init_r <= `DLY    wait_before_init_r + 1'b1;endassign count_slip_complete_c = wait_before_slip_r[6];always @(posedge USER_CLK)beginif( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )   beginbit_align_r <= 1'b0;end else beginif( ({rx_data_r[23:0],rx_data_r2[31:24]} == START_OF_PACKET_CHAR) || ({rx_data_r[15:0],rx_data_r2[31:16]} == START_OF_PACKET_CHAR) || ({rx_data_r[7:0],rx_data_r2[31:8]} == START_OF_PACKET_CHAR) || (rx_data_r[31:0]== START_OF_PACKET_CHAR) )beginbit_align_r <= 1'b1; // 比较COMMA所有可能存在的4种情况以确定bit对齐endendend// Comma realignment logic might be needed. 4 levels of registering for RXDATA to meet timing// In 4 Byte scenario, when align_comma_word=1, Comma can appear on any of the four bytes.// { BYTE3 | BYTE2 | BYTE1 | BYTE0 } - Comma can appear on BYTE0/1/2/3// If Comma appears on BYTE1/2/3, RX_DATA is realigned so that Comma appears on BYTE0 in rx_data_r_trackalways @(posedge USER_CLK)beginif(reset_on_error_in_r2 || system_reset_r2)    sel <= 2'b00;else if (begin_r && !rx_chanbond_seq_r)begin// if Comma appears on BYTE3 ..if((rx_data_r[(RX_DATA_WIDTH - 1) : 3*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[3]) // rxctrl_r 指示COMMA出现的位置,并比较收的包头是否匹配sel <= 2'b11;        // if Comma appears on BYTE2 ..else if((rx_data_r[(3*RX_DATA_WIDTH/4 - 1):2*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[2])beginsel <= 2'b10;end// if Comma appears on BYTE1 ..else if((rx_data_r[(2*RX_DATA_WIDTH/4 - 1):RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[1])beginsel <= 2'b01;end// if Comma appears on BYTE0 ..else if((rx_data_r[(RX_DATA_WIDTH/4 - 1):0] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[0])beginsel <= 2'b00;endend      end//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet chargenvar i; generatefor (i=0;i<CHANBOND_SEQ_LEN ;i=i+1)begin:register_chan_seqif(i==0)FD rx_chanbond_reg_0  ( .Q (rx_chanbond_reg[i]), .D (input_to_chanbond_reg_i), .C(USER_CLK));elseFD rx_chanbond_reg_i  ( .Q (rx_chanbond_reg[i]), .D (rx_chanbond_reg[i-1]), .C(USER_CLK));endendgenerateassign chanbondseq_in_data = |rx_chanbond_reg || input_to_chanbond_data_i; // 未绑定始终为0assign rx_data_has_start_char_c = (rx_data_aligned[7:0] == START_OF_PACKET_CHAR[7:0]) && !chanbondseq_in_data && (|rxctrl_r3); // 只要对齐后的数据有一byte匹配//_____________________________ Assign output ports _______________________    //assign TRACK_DATA_OUT = track_data_r;assign RX_SLIDE = slip_assert_r; // 输出slip信号// Drive the enpcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the plus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENPCOMMADET_OUT   <=  `DLY    1'b0;else              RXENPCOMMADET_OUT   <=  `DLY    1'b1;// Drive the enmcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the minus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENMCOMMADET_OUT   <=  `DLY    1'b0;else              RXENMCOMMADET_OUT   <=  `DLY    1'b1;assign INC_OUT =  start_of_packet_detected_c;   assign PATTERN_MATCHB_OUT =  data_error_detected_r;// Drive the enchansync port of the mgt for channel bondingalways @(posedge USER_CLK)if(system_reset_r2)  RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b0;else              RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b1;//___________________________ Check incoming data for errors ______________//An error is detected when data read for the BRAM does not match the incoming dataassign  error_detected_c    =  track_data_r3 && (rx_data_r_track != bram_data_r); // 数据与ROM中不匹配//We register the error_detected signal for use with the error counter logicalways @(posedge USER_CLK)if(!track_data_r)  error_detected_r    <=  `DLY    1'b0;elseerror_detected_r    <=  `DLY    error_detected_c;  //We count the total number of errors we detect. By keeping a count we make it less likely that we will miss//errors we did not directly observe. always @(posedge USER_CLK)if(system_reset_r2)error_count_r       <=  `DLY    9'd0;else if(error_detected_r)error_count_r       <=  `DLY    error_count_r + 1;    //Here we connect the lower 8 bits of the count (the MSbit is used only to check when the counter reaches//max value) to the module outputassign  ERROR_COUNT_OUT =   error_count_r[7:0];localparam ST_LINK_DOWN = 1'b0;localparam ST_LINK_UP   = 1'b1;reg        sm_link      = ST_LINK_DOWN;reg [6:0]  link_ctr     = 7'd0;always @(posedge USER_CLK) beginif(!track_data_r)  sm_link  <= ST_LINK_DOWN;else       case (sm_link)// The link is considered to be down when the link counter initially has a value less than 67. When the link is// down, the counter is incremented on each cycle where all PRBS bits match, but reset whenever any PRBS mismatch// occurs. When the link counter reaches 67, transition to the link up state.ST_LINK_DOWN: beginif (error_detected_r !== 1'b0) beginlink_ctr <= 7'd0;endelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;elsesm_link <= ST_LINK_UP;endend// When the link is up, the link counter is decreased by 34 whenever any PRBS mismatch occurs, but is increased by// only 1 on each cycle where all PRBS bits match, up to its saturation point of 67. If the link counter reaches// 0 (including rollover protection), transition to the link down state.ST_LINK_UP: beginif (error_detected_r !== 1'b0) beginif (link_ctr > 7'd33) beginlink_ctr <= link_ctr - 7'd34;if (link_ctr == 7'd34)sm_link  <= ST_LINK_DOWN;endelse beginlink_ctr <= 7'd0;sm_link  <= ST_LINK_DOWN;endendelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;endendendcaseendassign TRACK_DATA_OUT = sm_link;//____________________________ Counter to read from BRAM __________________________    always @(posedge USER_CLK)if(system_reset_r2 ||  (read_counter_i == (WORDS_IN_BRAM-1)))beginread_counter_i   <=  `DLY    10'd0;endelse if (start_of_packet_detected_r && !track_data_r)beginread_counter_i   <=  `DLY    10'd0;endelsebeginread_counter_i  <=  `DLY    read_counter_i + 10'd1;end//________________________________ BRAM Inference Logic _____________________________    //Array slice from dat file to compare against receive data  
generate
if(RX_DATA_WIDTH==80)
begin : datapath_80assign bram_data_r      = rx_data_ram_r[(RX_DATA_WIDTH-1):0];
end
else
begin : datapath_16_20_32_40_64assign bram_data_r = rx_data_ram_r[(16+RX_DATA_WIDTH-1):16];
end 
endgenerate`ifdef SIMinitialbegin$readmemh("gt_rom_init_rx.dat",rom,0,511);endalways @(posedge USER_CLK)rx_data_ram_r <= `DLY  rom[read_counter_i];
`elsealways @(posedge USER_CLK)rx_data_ram_r <= 'haa5555aa;//`DLY  rom[read_counter_i];
`endif    endmodule           

 

这篇关于xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421476

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St