xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析

2023-11-24 07:08

本文主要是介绍xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发于hifpga.com

XILINX的 serdes GT IP真的是够复杂的,生成的例子也是复杂,而且为了适配各种情况,代码里很多冗余的东西,发送部分比较简单 ,接收部分有点繁琐,我做了点注释,这里的只做的GTP的,GTX的自己看吧。 

///
//   ____  ____ 
//  /   /\/   / 
// /___/  \  /    Vendor: Xilinx 
// \   \   \/     Version : 3.6
//  \   \         Application : 7 Series FPGAs Transceivers Wizard  
//  /   /         Filename : gtwizard_0_gt_frame_check.v
// /___/   /\      
// \   \  /  \ 
//  \___\/\___\ 
//
//
// Module gtwizard_0_GT_FRAME_CHECK
// Generated by Xilinx 7 Series FPGAs Transceivers Wizard
// 
// 
// (c) Copyright 2010-2012 Xilinx, Inc. All rights reserved.
// 
// This file contains confidential and proprietary information
// of Xilinx, Inc. and is protected under U.S. and
// international copyright and other intellectual property
// laws.
// 
// DISCLAIMER
// This disclaimer is not a license and does not grant any
// rights to the materials distributed herewith. Except as
// otherwise provided in a valid license issued to you by
// Xilinx, and to the maximum extent permitted by applicable
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// (2) Xilinx shall not be liable (whether in contract or tort,
// including negligence, or under any other theory of
// liability) for any loss or damage of any kind or nature
// related to, arising under or in connection with these
// materials, including for any direct, or any indirect,
// special, incidental, or consequential loss or damage
// (including loss of data, profits, goodwill, or any type of
// loss or damage suffered as a result of any action brought
// by a third party) even if such damage or loss was
// reasonably foreseeable or Xilinx had been advised of the
// possibility of the same.
// 
// CRITICAL APPLICATIONS
// Xilinx products are not designed or intended to be fail-
// safe, or for use in any application requiring fail-safe
// performance, such as life-support or safety devices or
// systems, Class III medical devices, nuclear facilities,
// applications related to the deployment of airbags, or any
// other applications that could lead to death, personal
// injury, or severe property or environmental damage
// (individually and collectively, "Critical
// Applications"). Customer assumes the sole risk and
// liability of any use of Xilinx products in Critical
// Applications, subject only to applicable laws and
// regulations governing limitations on product liability.
// 
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// PART OF THIS FILE AT ALL TIMES. `timescale 1ns / 1ps
`define DLY #1//***********************************Entity Declaration************************
(* DowngradeIPIdentifiedWarnings="yes" *)
module gtwizard_0_GT_FRAME_CHECK #
(// parameter to set the number of words in the BRAMparameter   RX_DATA_WIDTH            =  64,parameter   RXCTRL_WIDTH             =  2,parameter   WORDS_IN_BRAM            =  512,parameter   CHANBOND_SEQ_LEN         =  1,parameter   COMMA_DOUBLE             =  16'hf628,parameter   START_OF_PACKET_CHAR     =  64'h00000000000000fb
)                            
(// User Interfaceinput  wire [(RX_DATA_WIDTH-1):0] RX_DATA_IN,input  wire [(RXCTRL_WIDTH-1):0] RXCTRL_IN,output reg          RXENPCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到plus COMMA模式时进行处理。output reg          RXENMCOMMADET_OUT,      // 未用,高电平有效信号,可实现字节边界对齐检测到minus COMMA模式时进行处理。 output reg          RX_ENCHAN_SYNC_OUT,     // 未用,驱动mgt的enchansync端口进行通道绑定input  wire         RX_CHANBOND_SEQ_IN,     // 输入通道绑定序列,不绑定时为0// Control Interfaceinput  wire         INC_IN,             // 未用output wire         INC_OUT,            // 非独立的收发测试时输出已开始进行COMMA检测,指示发送端地址递增output wire         PATTERN_MATCHB_OUT, // COMMA不匹配input  wire         RESET_ON_ERROR_IN,  // 通过将PATTERN_MATCHB_OUT输出给外部,由此产生出错后的复位// Error Monitoringoutput wire [7:0]   ERROR_COUNT_OUT,    // 错误数// Track Dataoutput wire         TRACK_DATA_OUT,     // 指示接收到的数据是否符合预期output wire RX_SLIDE,                   // 在对齐时要求GT滑动// System Interfaceinput  wire         USER_CLK,input  wire         SYSTEM_RESET 
);//***************************Internal Register Declarations******************** reg             reset_on_error_in_r;
reg             reset_on_error_in_r2;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r;
(* ASYNC_REG = "TRUE" *) (* keep = "true" *)reg             system_reset_r2;reg             begin_r;
reg             data_error_detected_r;
reg     [8:0]   error_count_r;
reg             error_detected_r;
reg     [9:0]   read_counter_i;    reg     [79:0] rom [0:511];    reg     [(RX_DATA_WIDTH-1):0] rx_data_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r_track;reg             start_of_packet_detected_r;    
reg             track_data_r;
reg             track_data_r2;
reg             track_data_r3;
reg     [79:0]  rx_data_ram_r;reg     [(RX_DATA_WIDTH-1):0] rx_data_r2;reg     [(RX_DATA_WIDTH-1):0] rx_data_r3;reg     [(RX_DATA_WIDTH-1):0] rx_data_r4;reg     [(RX_DATA_WIDTH-1):0] rx_data_r5;reg     [(RX_DATA_WIDTH-1):0] rx_data_r6;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r2;reg     [(RXCTRL_WIDTH-1):0]  rxctrl_r3;reg             rx_chanbond_seq_r;
reg             rx_chanbond_seq_r2;
reg             rx_chanbond_seq_r3; reg             idle_slip_r;reg             slip_assert_r;reg             wait_state_r;reg             bit_align_r;reg     [6:0]   wait_before_slip_r;reg     [6:0]   wait_before_init_r;    reg     [1:0]   sel;
//*********************************Wire Declarations***************************wire    [(RX_DATA_WIDTH-1):0] bram_data_r;
wire            error_detected_c;
wire            next_begin_c;
wire            next_data_error_detected_c;
wire            next_track_data_c;
wire            start_of_packet_detected_c;
wire            chanbondseq_in_data;
wire            input_to_chanbond_data_i;
wire            input_to_chanbond_reg_i;
wire    [(CHANBOND_SEQ_LEN-1):0]  rx_chanbond_reg;
wire            rxdata_or;
wire            count_slip_complete_c;
wire            next_idle_slip_c;
wire            next_slip_assert_c;
wire            wait_state_c;wire    [(RX_DATA_WIDTH-1):0]  rx_data_aligned;
wire            rx_data_has_start_char_c;
wire            tied_to_ground_i;
wire    [31:0]  tied_to_ground_vec_i;
wire            tied_to_vcc_i;//*********************************Main Body of Code***************************//_______________________  Static signal Assigments _______________________   assign tied_to_ground_i             = 1'b0;assign tied_to_ground_vec_i         = 32'h0000;assign tied_to_vcc_i                = 1'b1;//___________ synchronizing the async reset for ease of timing simulation ________always@(posedge USER_CLK)beginsystem_reset_r <= `DLY SYSTEM_RESET;    system_reset_r2 <= `DLY system_reset_r; end   always@(posedge USER_CLK)beginreset_on_error_in_r <= `DLY RESET_ON_ERROR_IN;    reset_on_error_in_r2 <= `DLY reset_on_error_in_r;    end   //______________________ Register RXDATA once to ease timing ______________   always @(posedge USER_CLK)beginrx_data_r  <= `DLY    RX_DATA_IN;rx_data_r2 <= `DLY    rx_data_r;end always @(posedge USER_CLK)beginrxctrl_r  <= `DLY    RXCTRL_IN;end//________________________________ State machine __________________________    // State registersalways @(posedge USER_CLK)if(system_reset_r2){begin_r,track_data_r,data_error_detected_r}  <=  `DLY    3'b100;elsebeginbegin_r                <=  `DLY    next_begin_c;track_data_r           <=  `DLY    next_track_data_c;data_error_detected_r  <=  `DLY    next_data_error_detected_c;end// Next state logicassign  next_begin_c                =   (begin_r && !start_of_packet_detected_r) // 产生启动请求信号,在该信号复位为高后且未收到已开始数据检测的指示时保持为高,或数据出错时|| data_error_detected_r ;assign  next_track_data_c           =   (begin_r && start_of_packet_detected_r)  // 产生检测数据跟踪请求,在启动为高后且收到开始检测到有效数据的指示时保持为高,或者已启动数据跟踪且未出错时|| (track_data_r && !error_detected_r);assign  next_data_error_detected_c  =   (track_data_r && error_detected_r);      // 已启动跟踪,且检测到了错误                        assign  start_of_packet_detected_c  =   rx_data_has_start_char_c;                // 已开始检测到有效数据always @(posedge USER_CLK) start_of_packet_detected_r    <=   `DLY  start_of_packet_detected_c;  // Registering for timingalways @(posedge USER_CLK) track_data_r2    <=   `DLY  track_data_r;  always @(posedge USER_CLK) track_data_r3    <=   `DLY  track_data_r2; //______________________________ Capture incoming data ____________________    // 根据COMMA出现的位置将32b重新对齐always @(posedge USER_CLK)beginif(system_reset_r2)    rx_data_r3 <= 'h0;else beginif(sel == 2'b01)beginrx_data_r3   <=  `DLY    {rx_data_r[(RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):RX_DATA_WIDTH/4]};  endelse if(sel == 2'b10)beginrx_data_r3   <=  `DLY    {rx_data_r[(2*RX_DATA_WIDTH/4-1):0],rx_data_r2[(RX_DATA_WIDTH - 1):2*RX_DATA_WIDTH/4]};  endelse if(sel == 2'b11)beginrx_data_r3   <=  `DLY    {rx_data_r[(3*RX_DATA_WIDTH/4 - 1):0],rx_data_r2[(RX_DATA_WIDTH-1):3*RX_DATA_WIDTH/4]};  endelse rx_data_r3  <=  `DLY    rx_data_r2;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrx_data_r4      <=  `DLY   'h0;rx_data_r5      <=  `DLY   'h0;rx_data_r6      <=  `DLY   'h0;rx_data_r_track <=  `DLY   'h0;endelsebeginrx_data_r4      <=  `DLY    rx_data_r3;rx_data_r5      <=  `DLY    rx_data_r4;rx_data_r6      <=  `DLY    rx_data_r5;rx_data_r_track <=  `DLY    rx_data_r6;endendalways @(posedge USER_CLK)beginif(system_reset_r2)  beginrxctrl_r2      <=  `DLY   'h0;rxctrl_r3      <=  `DLY   'h0;endelsebeginrxctrl_r2      <=  `DLY   rxctrl_r;rxctrl_r3      <=  `DLY   rxctrl_r2;endendassign rx_data_aligned = rx_data_r3;//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet charalways @(posedge USER_CLK)beginrx_chanbond_seq_r  <=  `DLY    RX_CHANBOND_SEQ_IN;rx_chanbond_seq_r2 <=  `DLY    rx_chanbond_seq_r;rx_chanbond_seq_r3 <=  `DLY    rx_chanbond_seq_r2;endassign input_to_chanbond_reg_i  = rx_chanbond_seq_r2; //一直为0assign input_to_chanbond_data_i = tied_to_ground_i;//______________ Code for Bit Slipping Logic______________assign rxdata_or = |(rx_data_r|rx_data_r2|rx_data_r3); // 通道有收到数据// State registersalways @(posedge USER_CLK)if( (system_reset_r2 == 1'b1) | (wait_before_init_r[6] == 1'b0) | (rxdata_or == 1'b0) ){idle_slip_r,slip_assert_r,wait_state_r}  <=  `DLY    3'b100;elsebeginidle_slip_r            <=  `DLY    next_idle_slip_c;slip_assert_r          <=  `DLY    next_slip_assert_c;wait_state_r           <=  `DLY    wait_state_c;end// Next state logicassign  next_idle_slip_c            =   (idle_slip_r & bit_align_r) | (wait_state_r & count_slip_complete_c); // slip操作空闲信号,当复为后且bit已对齐时,或者已完成执行滑窗后的等待assign  next_slip_assert_c          =   (idle_slip_r & !bit_align_r);   // 继续执行slip,上一slip操作已完成,但bit仍未对齐assign  wait_state_c                =   (slip_assert_r) | (wait_state_r & !count_slip_complete_c); // slip请求已产生,但是等待操作还未完成,则持续等待//_______ Counter for waiting clock cycles after RXSLIDE________always @(posedge USER_CLK)beginif (!wait_state_r)wait_before_slip_r  <= `DLY  7'b000000;elsewait_before_slip_r  <= `DLY  wait_before_slip_r + 1'b1; // slip操作等待计时器end//_______ Counter for waiting clock cycles before starting RXSLIDE operation________//_______ Wait for 64 clock cycles to see if the RXDATA is already byte aligned. If not, start RXSLIDE operationalways @(posedge USER_CLK)begin	    if( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )wait_before_init_r <= `DLY    7'b0000000;else if (wait_before_init_r[6] == 1'b0) // 在启动接收前等待64clkwait_before_init_r <= `DLY    wait_before_init_r + 1'b1;endassign count_slip_complete_c = wait_before_slip_r[6];always @(posedge USER_CLK)beginif( (system_reset_r2 == 1'b1) | (rxdata_or == 1'b0) )   beginbit_align_r <= 1'b0;end else beginif( ({rx_data_r[23:0],rx_data_r2[31:24]} == START_OF_PACKET_CHAR) || ({rx_data_r[15:0],rx_data_r2[31:16]} == START_OF_PACKET_CHAR) || ({rx_data_r[7:0],rx_data_r2[31:8]} == START_OF_PACKET_CHAR) || (rx_data_r[31:0]== START_OF_PACKET_CHAR) )beginbit_align_r <= 1'b1; // 比较COMMA所有可能存在的4种情况以确定bit对齐endendend// Comma realignment logic might be needed. 4 levels of registering for RXDATA to meet timing// In 4 Byte scenario, when align_comma_word=1, Comma can appear on any of the four bytes.// { BYTE3 | BYTE2 | BYTE1 | BYTE0 } - Comma can appear on BYTE0/1/2/3// If Comma appears on BYTE1/2/3, RX_DATA is realigned so that Comma appears on BYTE0 in rx_data_r_trackalways @(posedge USER_CLK)beginif(reset_on_error_in_r2 || system_reset_r2)    sel <= 2'b00;else if (begin_r && !rx_chanbond_seq_r)begin// if Comma appears on BYTE3 ..if((rx_data_r[(RX_DATA_WIDTH - 1) : 3*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[3]) // rxctrl_r 指示COMMA出现的位置,并比较收的包头是否匹配sel <= 2'b11;        // if Comma appears on BYTE2 ..else if((rx_data_r[(3*RX_DATA_WIDTH/4 - 1):2*RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[2])beginsel <= 2'b10;end// if Comma appears on BYTE1 ..else if((rx_data_r[(2*RX_DATA_WIDTH/4 - 1):RX_DATA_WIDTH/4] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[1])beginsel <= 2'b01;end// if Comma appears on BYTE0 ..else if((rx_data_r[(RX_DATA_WIDTH/4 - 1):0] == START_OF_PACKET_CHAR[7:0]) && rxctrl_r[0])beginsel <= 2'b00;endend      end//___________________________ Code for Channel bonding ____________________    // code to prevent checking of clock correction sequences for the start of packet chargenvar i; generatefor (i=0;i<CHANBOND_SEQ_LEN ;i=i+1)begin:register_chan_seqif(i==0)FD rx_chanbond_reg_0  ( .Q (rx_chanbond_reg[i]), .D (input_to_chanbond_reg_i), .C(USER_CLK));elseFD rx_chanbond_reg_i  ( .Q (rx_chanbond_reg[i]), .D (rx_chanbond_reg[i-1]), .C(USER_CLK));endendgenerateassign chanbondseq_in_data = |rx_chanbond_reg || input_to_chanbond_data_i; // 未绑定始终为0assign rx_data_has_start_char_c = (rx_data_aligned[7:0] == START_OF_PACKET_CHAR[7:0]) && !chanbondseq_in_data && (|rxctrl_r3); // 只要对齐后的数据有一byte匹配//_____________________________ Assign output ports _______________________    //assign TRACK_DATA_OUT = track_data_r;assign RX_SLIDE = slip_assert_r; // 输出slip信号// Drive the enpcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the plus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENPCOMMADET_OUT   <=  `DLY    1'b0;else              RXENPCOMMADET_OUT   <=  `DLY    1'b1;// Drive the enmcommaalign port of the gt for alignment// Active-High signal that enables the byte boundary alignment process when the minus comma pattern is detected.always @(posedge USER_CLK)if(system_reset_r2)  RXENMCOMMADET_OUT   <=  `DLY    1'b0;else              RXENMCOMMADET_OUT   <=  `DLY    1'b1;assign INC_OUT =  start_of_packet_detected_c;   assign PATTERN_MATCHB_OUT =  data_error_detected_r;// Drive the enchansync port of the mgt for channel bondingalways @(posedge USER_CLK)if(system_reset_r2)  RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b0;else              RX_ENCHAN_SYNC_OUT   <=  `DLY    1'b1;//___________________________ Check incoming data for errors ______________//An error is detected when data read for the BRAM does not match the incoming dataassign  error_detected_c    =  track_data_r3 && (rx_data_r_track != bram_data_r); // 数据与ROM中不匹配//We register the error_detected signal for use with the error counter logicalways @(posedge USER_CLK)if(!track_data_r)  error_detected_r    <=  `DLY    1'b0;elseerror_detected_r    <=  `DLY    error_detected_c;  //We count the total number of errors we detect. By keeping a count we make it less likely that we will miss//errors we did not directly observe. always @(posedge USER_CLK)if(system_reset_r2)error_count_r       <=  `DLY    9'd0;else if(error_detected_r)error_count_r       <=  `DLY    error_count_r + 1;    //Here we connect the lower 8 bits of the count (the MSbit is used only to check when the counter reaches//max value) to the module outputassign  ERROR_COUNT_OUT =   error_count_r[7:0];localparam ST_LINK_DOWN = 1'b0;localparam ST_LINK_UP   = 1'b1;reg        sm_link      = ST_LINK_DOWN;reg [6:0]  link_ctr     = 7'd0;always @(posedge USER_CLK) beginif(!track_data_r)  sm_link  <= ST_LINK_DOWN;else       case (sm_link)// The link is considered to be down when the link counter initially has a value less than 67. When the link is// down, the counter is incremented on each cycle where all PRBS bits match, but reset whenever any PRBS mismatch// occurs. When the link counter reaches 67, transition to the link up state.ST_LINK_DOWN: beginif (error_detected_r !== 1'b0) beginlink_ctr <= 7'd0;endelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;elsesm_link <= ST_LINK_UP;endend// When the link is up, the link counter is decreased by 34 whenever any PRBS mismatch occurs, but is increased by// only 1 on each cycle where all PRBS bits match, up to its saturation point of 67. If the link counter reaches// 0 (including rollover protection), transition to the link down state.ST_LINK_UP: beginif (error_detected_r !== 1'b0) beginif (link_ctr > 7'd33) beginlink_ctr <= link_ctr - 7'd34;if (link_ctr == 7'd34)sm_link  <= ST_LINK_DOWN;endelse beginlink_ctr <= 7'd0;sm_link  <= ST_LINK_DOWN;endendelse beginif (link_ctr < 7'd67)link_ctr <= link_ctr + 7'd1;endendendcaseendassign TRACK_DATA_OUT = sm_link;//____________________________ Counter to read from BRAM __________________________    always @(posedge USER_CLK)if(system_reset_r2 ||  (read_counter_i == (WORDS_IN_BRAM-1)))beginread_counter_i   <=  `DLY    10'd0;endelse if (start_of_packet_detected_r && !track_data_r)beginread_counter_i   <=  `DLY    10'd0;endelsebeginread_counter_i  <=  `DLY    read_counter_i + 10'd1;end//________________________________ BRAM Inference Logic _____________________________    //Array slice from dat file to compare against receive data  
generate
if(RX_DATA_WIDTH==80)
begin : datapath_80assign bram_data_r      = rx_data_ram_r[(RX_DATA_WIDTH-1):0];
end
else
begin : datapath_16_20_32_40_64assign bram_data_r = rx_data_ram_r[(16+RX_DATA_WIDTH-1):16];
end 
endgenerate`ifdef SIMinitialbegin$readmemh("gt_rom_init_rx.dat",rom,0,511);endalways @(posedge USER_CLK)rx_data_ram_r <= `DLY  rom[read_counter_i];
`elsealways @(posedge USER_CLK)rx_data_ram_r <= 'haa5555aa;//`DLY  rom[read_counter_i];
`endif    endmodule           

 

这篇关于xilinx A7 (artix 7)serdes GTP 生成的example例程注释解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421476

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Python中的输入输出与注释教程

《Python中的输入输出与注释教程》:本文主要介绍Python中的输入输出与注释教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、print 输出功能1. 基础用法2. 多参数输出3. 格式化输出4. 换行控制二、input 输入功能1. 基础用法2. 类

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru