链家网房源价格信息的爬虫分析工具

2023-11-24 06:20

本文主要是介绍链家网房源价格信息的爬虫分析工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

亿牛云代理.jpg

导语

链家网是中国最大的房地产交易平台之一,提供了全国各地的房源信息,包括价格、面积、户型、楼层、朝向、小区、地理位置等。这些信息对于房地产市场的分析和预测有着重要的价值,但是链家网并没有提供方便的数据接口,因此需要使用爬虫技术来抓取和分析这些数据。本文将介绍如何使用Scrapy框架和代理IP技术来实现一个链家网房源价格信息的爬虫分析工具,该工具可以根据指定的城市和区域,抓取并保存链家网上的房源信息,并对数据进行简单的统计和可视化。

概述

本文使用的爬虫技术主要包括以下几个方面:

  • Scrapy框架:Scrapy是一个用Python编写的开源爬虫框架,提供了强大的功能和灵活的扩展性,可以快速地开发高效的爬虫程序。
  • 代理IP技术:由于链家网有反爬虫机制,如果使用同一个IP地址频繁地访问网站,可能会被封禁或者返回错误页面。为了避免这种情况,可以使用代理IP技术,即通过不同的IP地址来访问目标网站,从而降低被检测到的风险,亿牛云爬虫代理是一个提供稳定、高效、安全的爬虫代理服务的平台,可以通过域名、端口、用户名、密码等方式来获取代理IP,并且支持多种协议和格式。

正文

爬虫项目结构

本文使用Scrapy框架来创建一个名为lianjia的爬虫项目,其结构如下:

lianjia/
├── lianjia/
│   ├── __init__.py
│   ├── items.py
│   ├── middlewares.py
│   ├── pipelines.py
│   ├── settings.py
│   └── spiders/
│       ├── __init__.py
│       └── lianjia_spider.py
└── scrapy.cfg

其中,主要涉及到以下几个文件:

  • items.py:定义了要抓取和保存的数据结构,即Item类。
  • middlewares.py:定义了用于处理请求和响应的中间件类,主要用于设置代理IP。
  • pipelines.py:定义了用于处理Item对象的管道类,主要用于保存数据到文件或数据库。
  • settings.py:定义了爬虫项目的全局配置参数,例如日志级别、并发数、下载延迟等。
  • lianjia_spider.py:定义了用于抓取链家网房源信息的爬虫类,即LianjiaSpider类。

Item类定义

在items.py文件中,定义了一个名为LianjiaItem的类,用于存储链家网房源信息。该类继承了scrapy.Item类,并定义了以下几个字段:

  • title:房源标题,例如“南北通透三居室 采光好 精装修”。
  • price:房源总价,单位为万元,例如“450”。
  • unit_price:房源单价,单位为元/平方米,例如“37889”。
  • area:房源面积,单位为平方米,例如“118.8”。
  • layout:房源户型,例如“3室2厅”。
  • floor:房源楼层,例如“中楼层(共6层)”。
  • direction:房源朝向,例如“南 北”。
  • community:房源所在小区,例如“金地名京”。
  • location:房源所在地理位置,包括区域、商圈和街道,例如“朝阳 望京 望京西园四区”。
  • url:房源详情页的链接,例如“https://bj.lianjia.com/ershoufang/101113667258.html”。

LianjiaItem类的代码如下:

# 导入scrapy模块
import scrapy# 定义LianjiaItem类
class LianjiaItem(scrapy.Item):# 定义字段title = scrapy.Field()price = scrapy.Field()unit_price = scrapy.Field()area = scrapy.Field()layout = scrapy.Field()floor = scrapy.Field()direction = scrapy.Field()community = scrapy.Field()location = scrapy.Field()url = scrapy.Field()

中间件类定义

在middlewares.py文件中,定义了一个名为ProxyMiddleware的类,用于设置代理IP。该类继承了scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware类,并重写了process_request方法。该方法的作用是在每个请求发送之前,根据亿牛云爬虫代理的域名、端口、用户名、密码等参数,生成一个代理IP,并将其设置到请求的meta属性中。这样,请求就会通过代理IP来访问目标网站。

ProxyMiddleware类的代码如下:

# 导入scrapy模块
import scrapy
# 导入HttpProxyMiddleware类
from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware# 定义ProxyMiddleware类
class ProxyMiddleware(HttpProxyMiddleware):# 重写process_request方法def process_request(self, request, spider):# 设置亿牛云 爬虫代理的域名、端口、用户名、密码等参数proxy_host = "www.16yun.cn"proxy_port = "7020"proxy_user = "16YUN"proxy_pass = "16IP"# 生成代理IPproxy_ip = f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}"# 将代理IP设置到请求的meta属性中request.meta["proxy"] = proxy_ip

管道类定义

在pipelines.py文件中,定义了一个名为LianjiaPipeline的类,用于保存数据到文件或数据库。该类继承了scrapy.pipelines.files.FilesPipeline类,并重写了process_item方法。该方法的作用是在每个Item对象被抓取之后,将其转换为字典格式,并使用json模块将其追加到一个名为lianjia.json的文件中。这样,就可以将所有抓取到的数据保存到一个文件中。

LianjiaPipeline类的代码如下:

# 导入scrapy模块
import scrapy
# 导入FilesPipeline类
from scrapy.pipelines.files import FilesPipeline
# 导入json模块
import json# 定义LianjiaPipeline类
class LianjiaPipeline(FilesPipeline):# 重写process_item方法def process_item(self, item, spider):# 将Item对象转换为字典格式data = dict(item)# 打开一个名为lianjia.json的文件,如果不存在则创建with open("lianjia.json", "a", encoding="utf-8") as f:# 使用json模块将数据转换为json格式,并追加到文件中,每行一个数据json.dump(data, f, ensure_ascii=False)f.write("\n")# 返回Item对象return item

配置参数设置

在settings.py文件中,设置了一些爬虫项目的全局配置参数,例如日志级别、并发数、下载延迟等。这些参数可以根据实际情况进行调整,以提高爬虫的性能和稳定性。以下是一些重要的参数的说明:

  • LOG_LEVEL:设置日志的输出级别,可以选择DEBUG、INFO、WARNING、ERROR等,用于控制日志的详细程度。默认为INFO。
  • CONCURRENT_REQUESTS:设置并发请求的最大数量,即同时发送的请求的数量。默认为16。
  • DOWNLOAD_DELAY:设置下载请求之间的延迟时间,单位为秒。用于避免过快地访问目标网站,导致被封禁或者返回错误页面。默认为0。
  • ITEM_PIPELINES:设置启用的管道类及其优先级,用于处理Item对象。优先级越低,越先执行。本文只启用了LianjiaPipeline类,并设置其优先级为300。
  • DOWNLOADER_MIDDLEWARES:设置启用的中间件类及其优先级,用于处理请求和响应。优先级越低,越先执行。本文只启用了ProxyMiddleware类,并设置其优先级为100。

settings.py文件的部分代码如下:

# 设置日志级别
LOG_LEVEL = "INFO"# 设置并发请求的最大数量
CONCURRENT_REQUESTS = 16# 设置下载延迟
DOWNLOAD_DELAY = 0.5# 设置启用的管道类及其优先级
ITEM_PIPELINES = {"lianjia.pipelines.LianjiaPipeline": 300,
}# 设置启用的中间件类及其优先级
DOWNLOADER_MIDDLEWARES = {"lianjia.middlewares.ProxyMiddleware": 100,
}

爬虫类定义

在lianjia_spider.py文件中,定义了一个名为LianjiaSpider的类,用于抓取链家网房源信息。该类继承了scrapy.Spider类,并定义了以下几个属性和方法:

  • name:爬虫的名称,用于运行爬虫时指定。本文设置为"lianjia"。
  • allowed_domains:允许爬取的域名列表,用于过滤不相关的链接。本文设置为[“lianjia.com”]。
  • start_urls:起始URL列表,用于开始爬取的页面。本文根据指定的城市和区域,生成对应的链家网二手房列表页的链接。
  • parse:解析响应的方法,用于提取数据和链接。本文使用XPath语法来提取房源信息和下一页链接,并生成Item对象和Request对象。

LianjiaSpider类的代码如下:

# 导入scrapy模块
import scrapy
# 导入LianjiaItem类
from lianjia.items import LianjiaItem# 定义LianjiaSpider类
class LianjiaSpider(scrapy.Spider):# 定义爬虫名称name = "lianjia"# 定义允许爬取的域名列表allowed_domains = ["lianjia.com"]# 定义起始URL列表def start_requests(self):# 设置要爬取的城市和区域,可以根据需要修改city = "bj"region = "chaoyang"# 生成起始URLstart_url = f"https://{city}.lianjia.com/ershoufang/{region}/"# 发送请求,并指定回调函数为parseyield scrapy.Request(url=start_url, callback=self.parse)# 定义解析响应的方法def parse(self, response):# 使用XPath语法提取房源信息列表house_list = response.xpath("//ul[@class='sellListContent']/li")# 遍历房源信息列表for house in house_list:# 创建一个LianjiaItem对象item = LianjiaItem()# 提取房源标题,并赋值给item的title字段item["title"] = house.xpath(".//div[@class='title']/a/text()").get()# 提取房源总价,并赋值给item的price字段item["price"] = house.xpath(".//div[@class='priceInfo']/div[@class='totalPrice']/span/text()").get()# 提取房源单价,并赋值给item的unit_price字段item["unit_price"] = house.xpath(".//div[@class='priceInfo']/div[@class='unitPrice']/span/text()").get()# 提取房源面积,并赋值给item的area字段item["area"] = house.xpath(".//div[@class='houseInfo']/text()")\.re_first(r"\d+\.?\d*平米")# 提取房源户型,并赋值给item的layout字段item["layout"] = house.xpath(".//div[@class='houseInfo']/text()")\.re_first(r"\d+室\d+厅")# 提取房源楼层,并赋值给item的floor字段item["floor"] = house.xpath(".//div[@class='positionInfo']/text()")\.re_first(r".*楼层")# 提取房源朝向,并赋值给item的direction字段item["direction"] = house.xpath(".//div[@class='positionInfo']/text()")\.re_first(r"[东南西北 ]+")# 提取房源所在小区,并赋值给item的community字段item["community"] = house.xpath(".//div[@class='positionInfo']/a/text()")\.get()# 提取房源所在地理位置,并赋值给item的location字段item["location"] = "".join(house.xpath(".//div[@class='positionInfo']/a/text()")\.getall()[1:])# 提取房源详情页的链接,并赋值给item的url字段item["url"] = house.xpath(".//div[@class='title']/a/@href")\.get()# 返回Item对象yield item# 使用XPath语法提取下一页链接next_page = response.xpath("//div[@class='page-box fr']//@page-url")\.get()# 如果存在下一页链接,继续发送请求,并指定回调函数为parseif next_page:# 拼接完整的URLnext_url = response.urljoin(next_page)# 发送请求,并指定回调函数为parseyield scrapy.Request(url=next_url, callback=self.parse)

结语

本文介绍了如何使用Scrapy框架和代理IP技术来实现一个链家网房源价格信息的爬虫分析工具,该工具可以根据指定的城市和区域,抓取并保存链家网上的房源信息,并对数据进行简单的统计和可视化。本文只是一个简单的示例,实际应用中还可以根据需要进行更多的优化和扩展,例如增加异常处理、增加数据清洗、增加数据分析、增加数据可视化等。希望本文能对你有所帮助,谢谢!

这篇关于链家网房源价格信息的爬虫分析工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421388

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

jvm调优常用命令行工具详解

《jvm调优常用命令行工具详解》:本文主要介绍jvm调优常用命令行工具的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一 jinfo命令查看参数1.1 查看jvm参数二 jstack命令2.1 查看现场堆栈信息三 jstat 实时查看堆内存,gc情况3.1

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑