链家网房源价格信息的爬虫分析工具

2023-11-24 06:20

本文主要是介绍链家网房源价格信息的爬虫分析工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

亿牛云代理.jpg

导语

链家网是中国最大的房地产交易平台之一,提供了全国各地的房源信息,包括价格、面积、户型、楼层、朝向、小区、地理位置等。这些信息对于房地产市场的分析和预测有着重要的价值,但是链家网并没有提供方便的数据接口,因此需要使用爬虫技术来抓取和分析这些数据。本文将介绍如何使用Scrapy框架和代理IP技术来实现一个链家网房源价格信息的爬虫分析工具,该工具可以根据指定的城市和区域,抓取并保存链家网上的房源信息,并对数据进行简单的统计和可视化。

概述

本文使用的爬虫技术主要包括以下几个方面:

  • Scrapy框架:Scrapy是一个用Python编写的开源爬虫框架,提供了强大的功能和灵活的扩展性,可以快速地开发高效的爬虫程序。
  • 代理IP技术:由于链家网有反爬虫机制,如果使用同一个IP地址频繁地访问网站,可能会被封禁或者返回错误页面。为了避免这种情况,可以使用代理IP技术,即通过不同的IP地址来访问目标网站,从而降低被检测到的风险,亿牛云爬虫代理是一个提供稳定、高效、安全的爬虫代理服务的平台,可以通过域名、端口、用户名、密码等方式来获取代理IP,并且支持多种协议和格式。

正文

爬虫项目结构

本文使用Scrapy框架来创建一个名为lianjia的爬虫项目,其结构如下:

lianjia/
├── lianjia/
│   ├── __init__.py
│   ├── items.py
│   ├── middlewares.py
│   ├── pipelines.py
│   ├── settings.py
│   └── spiders/
│       ├── __init__.py
│       └── lianjia_spider.py
└── scrapy.cfg

其中,主要涉及到以下几个文件:

  • items.py:定义了要抓取和保存的数据结构,即Item类。
  • middlewares.py:定义了用于处理请求和响应的中间件类,主要用于设置代理IP。
  • pipelines.py:定义了用于处理Item对象的管道类,主要用于保存数据到文件或数据库。
  • settings.py:定义了爬虫项目的全局配置参数,例如日志级别、并发数、下载延迟等。
  • lianjia_spider.py:定义了用于抓取链家网房源信息的爬虫类,即LianjiaSpider类。

Item类定义

在items.py文件中,定义了一个名为LianjiaItem的类,用于存储链家网房源信息。该类继承了scrapy.Item类,并定义了以下几个字段:

  • title:房源标题,例如“南北通透三居室 采光好 精装修”。
  • price:房源总价,单位为万元,例如“450”。
  • unit_price:房源单价,单位为元/平方米,例如“37889”。
  • area:房源面积,单位为平方米,例如“118.8”。
  • layout:房源户型,例如“3室2厅”。
  • floor:房源楼层,例如“中楼层(共6层)”。
  • direction:房源朝向,例如“南 北”。
  • community:房源所在小区,例如“金地名京”。
  • location:房源所在地理位置,包括区域、商圈和街道,例如“朝阳 望京 望京西园四区”。
  • url:房源详情页的链接,例如“https://bj.lianjia.com/ershoufang/101113667258.html”。

LianjiaItem类的代码如下:

# 导入scrapy模块
import scrapy# 定义LianjiaItem类
class LianjiaItem(scrapy.Item):# 定义字段title = scrapy.Field()price = scrapy.Field()unit_price = scrapy.Field()area = scrapy.Field()layout = scrapy.Field()floor = scrapy.Field()direction = scrapy.Field()community = scrapy.Field()location = scrapy.Field()url = scrapy.Field()

中间件类定义

在middlewares.py文件中,定义了一个名为ProxyMiddleware的类,用于设置代理IP。该类继承了scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware类,并重写了process_request方法。该方法的作用是在每个请求发送之前,根据亿牛云爬虫代理的域名、端口、用户名、密码等参数,生成一个代理IP,并将其设置到请求的meta属性中。这样,请求就会通过代理IP来访问目标网站。

ProxyMiddleware类的代码如下:

# 导入scrapy模块
import scrapy
# 导入HttpProxyMiddleware类
from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware# 定义ProxyMiddleware类
class ProxyMiddleware(HttpProxyMiddleware):# 重写process_request方法def process_request(self, request, spider):# 设置亿牛云 爬虫代理的域名、端口、用户名、密码等参数proxy_host = "www.16yun.cn"proxy_port = "7020"proxy_user = "16YUN"proxy_pass = "16IP"# 生成代理IPproxy_ip = f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}"# 将代理IP设置到请求的meta属性中request.meta["proxy"] = proxy_ip

管道类定义

在pipelines.py文件中,定义了一个名为LianjiaPipeline的类,用于保存数据到文件或数据库。该类继承了scrapy.pipelines.files.FilesPipeline类,并重写了process_item方法。该方法的作用是在每个Item对象被抓取之后,将其转换为字典格式,并使用json模块将其追加到一个名为lianjia.json的文件中。这样,就可以将所有抓取到的数据保存到一个文件中。

LianjiaPipeline类的代码如下:

# 导入scrapy模块
import scrapy
# 导入FilesPipeline类
from scrapy.pipelines.files import FilesPipeline
# 导入json模块
import json# 定义LianjiaPipeline类
class LianjiaPipeline(FilesPipeline):# 重写process_item方法def process_item(self, item, spider):# 将Item对象转换为字典格式data = dict(item)# 打开一个名为lianjia.json的文件,如果不存在则创建with open("lianjia.json", "a", encoding="utf-8") as f:# 使用json模块将数据转换为json格式,并追加到文件中,每行一个数据json.dump(data, f, ensure_ascii=False)f.write("\n")# 返回Item对象return item

配置参数设置

在settings.py文件中,设置了一些爬虫项目的全局配置参数,例如日志级别、并发数、下载延迟等。这些参数可以根据实际情况进行调整,以提高爬虫的性能和稳定性。以下是一些重要的参数的说明:

  • LOG_LEVEL:设置日志的输出级别,可以选择DEBUG、INFO、WARNING、ERROR等,用于控制日志的详细程度。默认为INFO。
  • CONCURRENT_REQUESTS:设置并发请求的最大数量,即同时发送的请求的数量。默认为16。
  • DOWNLOAD_DELAY:设置下载请求之间的延迟时间,单位为秒。用于避免过快地访问目标网站,导致被封禁或者返回错误页面。默认为0。
  • ITEM_PIPELINES:设置启用的管道类及其优先级,用于处理Item对象。优先级越低,越先执行。本文只启用了LianjiaPipeline类,并设置其优先级为300。
  • DOWNLOADER_MIDDLEWARES:设置启用的中间件类及其优先级,用于处理请求和响应。优先级越低,越先执行。本文只启用了ProxyMiddleware类,并设置其优先级为100。

settings.py文件的部分代码如下:

# 设置日志级别
LOG_LEVEL = "INFO"# 设置并发请求的最大数量
CONCURRENT_REQUESTS = 16# 设置下载延迟
DOWNLOAD_DELAY = 0.5# 设置启用的管道类及其优先级
ITEM_PIPELINES = {"lianjia.pipelines.LianjiaPipeline": 300,
}# 设置启用的中间件类及其优先级
DOWNLOADER_MIDDLEWARES = {"lianjia.middlewares.ProxyMiddleware": 100,
}

爬虫类定义

在lianjia_spider.py文件中,定义了一个名为LianjiaSpider的类,用于抓取链家网房源信息。该类继承了scrapy.Spider类,并定义了以下几个属性和方法:

  • name:爬虫的名称,用于运行爬虫时指定。本文设置为"lianjia"。
  • allowed_domains:允许爬取的域名列表,用于过滤不相关的链接。本文设置为[“lianjia.com”]。
  • start_urls:起始URL列表,用于开始爬取的页面。本文根据指定的城市和区域,生成对应的链家网二手房列表页的链接。
  • parse:解析响应的方法,用于提取数据和链接。本文使用XPath语法来提取房源信息和下一页链接,并生成Item对象和Request对象。

LianjiaSpider类的代码如下:

# 导入scrapy模块
import scrapy
# 导入LianjiaItem类
from lianjia.items import LianjiaItem# 定义LianjiaSpider类
class LianjiaSpider(scrapy.Spider):# 定义爬虫名称name = "lianjia"# 定义允许爬取的域名列表allowed_domains = ["lianjia.com"]# 定义起始URL列表def start_requests(self):# 设置要爬取的城市和区域,可以根据需要修改city = "bj"region = "chaoyang"# 生成起始URLstart_url = f"https://{city}.lianjia.com/ershoufang/{region}/"# 发送请求,并指定回调函数为parseyield scrapy.Request(url=start_url, callback=self.parse)# 定义解析响应的方法def parse(self, response):# 使用XPath语法提取房源信息列表house_list = response.xpath("//ul[@class='sellListContent']/li")# 遍历房源信息列表for house in house_list:# 创建一个LianjiaItem对象item = LianjiaItem()# 提取房源标题,并赋值给item的title字段item["title"] = house.xpath(".//div[@class='title']/a/text()").get()# 提取房源总价,并赋值给item的price字段item["price"] = house.xpath(".//div[@class='priceInfo']/div[@class='totalPrice']/span/text()").get()# 提取房源单价,并赋值给item的unit_price字段item["unit_price"] = house.xpath(".//div[@class='priceInfo']/div[@class='unitPrice']/span/text()").get()# 提取房源面积,并赋值给item的area字段item["area"] = house.xpath(".//div[@class='houseInfo']/text()")\.re_first(r"\d+\.?\d*平米")# 提取房源户型,并赋值给item的layout字段item["layout"] = house.xpath(".//div[@class='houseInfo']/text()")\.re_first(r"\d+室\d+厅")# 提取房源楼层,并赋值给item的floor字段item["floor"] = house.xpath(".//div[@class='positionInfo']/text()")\.re_first(r".*楼层")# 提取房源朝向,并赋值给item的direction字段item["direction"] = house.xpath(".//div[@class='positionInfo']/text()")\.re_first(r"[东南西北 ]+")# 提取房源所在小区,并赋值给item的community字段item["community"] = house.xpath(".//div[@class='positionInfo']/a/text()")\.get()# 提取房源所在地理位置,并赋值给item的location字段item["location"] = "".join(house.xpath(".//div[@class='positionInfo']/a/text()")\.getall()[1:])# 提取房源详情页的链接,并赋值给item的url字段item["url"] = house.xpath(".//div[@class='title']/a/@href")\.get()# 返回Item对象yield item# 使用XPath语法提取下一页链接next_page = response.xpath("//div[@class='page-box fr']//@page-url")\.get()# 如果存在下一页链接,继续发送请求,并指定回调函数为parseif next_page:# 拼接完整的URLnext_url = response.urljoin(next_page)# 发送请求,并指定回调函数为parseyield scrapy.Request(url=next_url, callback=self.parse)

结语

本文介绍了如何使用Scrapy框架和代理IP技术来实现一个链家网房源价格信息的爬虫分析工具,该工具可以根据指定的城市和区域,抓取并保存链家网上的房源信息,并对数据进行简单的统计和可视化。本文只是一个简单的示例,实际应用中还可以根据需要进行更多的优化和扩展,例如增加异常处理、增加数据清洗、增加数据分析、增加数据可视化等。希望本文能对你有所帮助,谢谢!

这篇关于链家网房源价格信息的爬虫分析工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421388

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维