【部分源码分析】PLATO——开放域对话的SOTA之作

2023-11-23 20:00

本文主要是介绍【部分源码分析】PLATO——开放域对话的SOTA之作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【部分源码分析】PLATO——开放域对话的SOTA之作

Github链接:https://github.com/PaddlePaddle/Knover/tree/master
论文链接:https://arxiv.org/abs/2006.16779

PLATO目录

  • 【部分源码分析】PLATO——开放域对话的SOTA之作
  • 数据准备
    • 部分数据集展示
    • 数据预处理代码
  • 训练与预测


数据准备

注:此处的数据预处理部分仅针对千言数据集(中文,三大任务场景,六个分数据集)
千言多技能对话数据集及比赛地址:
https://aistudio.baidu.com/aistudio/competition/detail/55
在这里插入图片描述
对于PLATO(Knover)模型而言,文本数据的词嵌入处理方式如上图所示
Plato-2模型的输入采用了token,role,turn,position相融合的表示方式。在Knover的源码中,对输入的处理是通过了sentencepiece工具(BERT也使用的这个)。sentencepiece提供了一种方便快捷的分词操作,我们可以直接将整个数据集放进去,设定分词的单元数量,然后等待训练出一个好用的分词模型(会输出一个预训练模型,之后对每个语句都会用这个模型进行编码和解码,即分词,转换成数字编码,输出再转换回句子)

上图给出了Plato模型需要的输入,当然这些是以Embedding的形式给出的,而Embedding是在模型中转化的,它在转化之前是以数字编码存在的。Embedding现在已经是语言处理技术的标配了,它把每一个标记映射到空间中,增加其表征能力。我们暂时忽略最前边的latent,它是表示不同回答方式的隐变量,用于Plato在众多可能回答中选择正确的回答,我们这里不关心这个是怎么实现的,所以不展开讨论。在latent之后,有contex和response两个内容,其中context包含了众多信息:历史对话,背景知识,以及对话与对话之间分隔的符号[EOU], [BOU]等等,如果有背景知识的话,也会列到context中response则是训练中需要的部分,在测试中这一部分是空的。
TokenEmbeddings表示各语言单元的Embedding(词向量);RoleEmbeddings是各个语言单元在其中扮演的角色,这个主要是用来区分内容是context(EA)还是response(EB)(亦或是背景知识,背景知识可以作为response的角色,也可以单独成为一类,即EC);TurnEmbeddings表示每一部分在当前回合中的相对回合数;PositionEmbeddings则是每个语言单元的位置,一般是range(0, len(context))。
知道了这些,我们回到Record上来看这个输入应该怎么得到。由定义可知,Record是带名称的元组,这样我们立马可以知道,这个元组是通过名称来调用其中的内容的。fields的内容是什么呢?从官方的源码中可以总结出:fields = [“token_ids”, “type_ids”, “pos_ids”, “tgt_start_idx”, “data_id”]。也就是说,输入需要给出5个部分,token_ids就是处理过的语言单位的编码;type_ids就是个语言单位扮演的角色,是context还是response;pos_ids是各个语言单位的位置;tgt_start_idx是回复生成的开始位置,也即context的最后一个词的位置;data_id就是这个训练样本的标记。

部分数据集展示

三个任务场景:闲聊、知识、推荐
六大数据集:
1.闲聊对话:华为的微博数据 [1] ,北航和微软的豆瓣多轮对话 [2],清华的LCCC数据集[3]
2.知识对话:百度的DuConv [4],清华的KdConv [5],腾讯的检索辅助生成对话数据集 [6]
3.推荐对话:百度的DuRecDial [7]在这里插入图片描述在这里插入图片描述

数据预处理代码

数据预处理代码在./luge-dialogue/tools/convert_data_to_numerical.py

对于六大数据集的不同组成部分都转换成了四个元素
type: 三大任务类型:闲聊+知识+推荐
knowledge: 对话段背后的知识背景(如知识图谱)
context: 对话上文
response:对话下文(训练时已知,测试预测时未知)

type_dict = {"chitchat": 30001, "knowledge": 30002, "recommend": 30003}

在这里插入图片描述
line75
在六个数据集均被转换成四个组成元素后,均被def convert_sample_to_numerical()进行id化
在该函数中均用sentencepiece.SentencePieceProcessor()进行分词编码处理

response_ids = sp.EncodeAsIds(response) + [2]
knowledge_ids = sp.EncodeAsIds(knowledge) + [2]
utterance_ids = sp.EncodeAsIds(utterance) + [2]
# context同样处理,不过先进行split分句
if context != "":for utterance in context.split('\t'):utterance_ids = sp.EncodeAsIds(utterance) + [2]context_ids_list.append(utterance_ids)# 对话上文通过append将均在context_ids_list中,并通过截断或填充等长得到
truncate_type, new_context_ids_list = truncate_ids_list(context_ids_list, max_seq_len - max_response_len - 2, truncate_first_turn=truncate_first_turn)
truncate_type_stat[truncate_type] += 1
# 对话下文同样进行截断或填充# 最后,将对话上文+对话下文的id均放在token_ids中
# token_ids的初始
token_ids = [1, type_id]# sent_ids存对话上文还是对话下文,上文用0,下文用1表示
# sent_ids的初始
sent_ids = [0, 0]# position_ids存整个对话的位置信息,即文本的位置编码
position_ids = range(len(token_ids))

具体处理过程可阅读上述精简代码和注释,最终将对话文本编码成三个id序列:
token_ids:任务类型(闲聊、知识、推荐) + 知识 + 对话上文 + 【对话下文】(测试集无下文)
sent_ids: 对话上文、下文的01编码,上文用0,下文用1(注意:token_ids中的知识算作对话上文)
position_ids:位置编码,连续自然数代表,从0、1、2、…到len(token_ids)

至此,文本编码过程完成

训练与预测

在这里插入图片描述
训练的方式如上图,传入conf参数文件进行训练

首先在./scripts/local/train.sh中,可以通过export修改可使用GPU数量,如下图使用单卡
在这里插入图片描述
conf参数文件,以12L_train.conf为例,传给train.py文件的所需参数
在这里插入图片描述
好了,在Plato模型的训练阶段都将通过train.py,它通过调用其余文件进行模型的训练过程,其中多为传参代码。
在这里插入图片描述
在train.py中的训练方式是调用tasks/task_base.py进行训练

而task_base.py又是调用models/model_base.py进行具体的训练操作
在这里插入图片描述

  • generator.py:定义了模型的预测输出,其中包含了beam-search、temperature、topk、num_samples等参数的设定与解码的实现
  • model_base.py:实现了模型的训练与预测
  • nsp_model.py:取出模型的不同层,进行lm_loss、nsp_loss 、nsp_acc的计算(MLM语言模型loss、)
  • optimizer.py:自定义的AdamW
  • unified_transformer.py:seq2seq,一对一映射的传统模型
    在Plato模型中,最基本的组成单位就是transformer_block
    因此,让我们来看models/transformer_block.py,最基本也是最重要的文件

对于Multi-head self attention和Fnn不再阐述,没有特别的

值得注意的是pre_post_process_layer通过函数接收到的cmd字符串来实现
如BERT使用的post-normalization或GPT-2使用的pre-normalization,因Plato的参数量和数据量在本文件代码中使用cmd=n实现pre-normalization,当然可以修改cmd=da实现post-normalization
在这里插入图片描述

除此之外,还值得注意的是plato.py文件
通过gumbel_softmax实现离散隐空间的“采样”操作
在这里插入图片描述

参考与引用:
https://zhuanlan.zhihu.com/p/292013818
https://www.datafountain.cn/competitions/470/datasets

这篇关于【部分源码分析】PLATO——开放域对话的SOTA之作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/420387

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很