关于N皇后问题高效试探回溯算法的分析

2023-11-23 18:38

本文主要是介绍关于N皇后问题高效试探回溯算法的分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

// N Queens Problem
// 试探-回溯算法,递归实现

// sum用来记录皇后放置成功的不同布局数;upperlim用来标记所有列都已经放置好了皇后。
long sum = 0, upperlim = 1;     

// 试探算法从最右边的列开始。
void test(long row, long ld, long rd) 。
{
   if (row != upperlim)
   {
     // row,ld,rd进行“或”运算,求得所有可以放置皇后的列,对应位为0,
     // 然后再取反后“与”上全1的数,来求得当前所有可以放置皇后的位置,对应列改为1。
     // 也就是求取当前哪些列可以放置皇后。
     long pos = upperlim & ~(row | ld | rd); 
     while (pos) // 0 -- 皇后没有地方可放,回溯。
     {
        // 拷贝pos最右边为1的bit,其余bit置0。
        // 也就是取得可以放皇后的最右边的列。
        long p = pos & -pos;                                              

        // 将pos最右边为1的bit清零。
        // 也就是为获取下一次的最右可用列使用做准备,
        // 程序将来会回溯到这个位置继续试探。
        pos -= p;                           

        // row + p,将当前列置1,表示记录这次皇后放置的列。
        // (ld + p) << 1,标记当前皇后左边相邻的列不允许下一个皇后放置。
        // (ld + p) >> 1,标记当前皇后右边相邻的列不允许下一个皇后放置。
        // 此处的移位操作实际上是记录对角线上的限制,只是因为问题都化归
        // 到一行网格上来解决,所以表示为列的限制就可以了。显然,随着移位
        // 在每次选择列之前进行,原来N×N网格中某个已放置的皇后针对其对角线
        // 上产生的限制都被记录下来了。
        test(row + p, (ld + p) << 1, (rd + p) >> 1);                              
       }
   }
   else   
   {
       // row的所有位都为1,即找到了一个成功的布局,回溯。
       sum++;
   }
}

int main(int argc, char *argv[])
{
   time_t tm;
   int n = 16;

   if (argc != 1)
   n = atoi(argv[1]);
   tm = time(0);

   // 因为整型数的限制,最大只能32位,
   // 如果想处理N大于32的皇后问题,需要
   // 用bitset数据结构进行存储。
   if ((n < 1) || (n > 32))                 
   {
   printf(" 只能计算1-32之间/n");
   exit(-1);
   }
   printf("%d 皇后/n", n);

   // N个皇后只需N位存储,N列中某列有皇后则对应bit置1。
   upperlim = (upperlim << n) - 1;         

   test(0, 0, 0);
   printf("共有%ld种排列, 计算时间%d秒 /n", sum, (int) (time(0) - tm));
}

上述代码容易看懂,但我觉得核心的是在针对试探-回溯算法所用的数据结构的设计上。
程序采用了递归,也就是借用了编译系统提供的自动回溯功能。

算法的核心:使用bit数组来代替以前由int或者bool数组来存储当前格子被占用或者说可用信息,从这

可以看出N个皇后对应需要N位表示。
巧妙之处在于:以前我们需要在一个N*N正方形的网格中挪动皇后来进行试探回溯,每走一步都要观察

和记录一个格子前后左右对角线上格子的信息;采用bit位进行信息存储的话,就可以只在一行格子也

就是(1行×N列)个格子中进行试探回溯即可,对角线上的限制被化归为列上的限制。
程序中主要需要下面三个bit数组,每位对应网格的一列,在C中就是取一个整形数的某部分连续位即可


row用来记录当前哪些列上的位置不可用,也就是哪些列被皇后占用,对应为1。
ld,rd同样也是记录当前哪些列位置不可用,但是不表示被皇后占用,而是表示会被已有皇后在对角线

上吃掉的位置。这三个位数组进行“或”操作后就是表示当前还有哪些位置可以放置新的皇后,对应0

的位置可放新的皇后。如下图所示的8皇后问题求解得第一步:
row:          [ ][ ][ ][ ][ ][ ][ ][*]
ld:           [ ][ ][ ][ ][ ][ ][*][ ]
rd:           [ ][ ][ ][ ][ ][ ][ ][ ]
--------------------------------------
row|ld|rd:    [ ][ ][ ][ ][ ][ ][*][*]
所有下一个位置的试探过程都是通过位操作来实现的,这是借用了C语言的好处,详见代码注释。

关于此算法,如果考虑N×N棋盘的对称性,对于大N来说仍能较大地提升效率!

这篇关于关于N皇后问题高效试探回溯算法的分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419936

相关文章

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效