孤立随机森林算法

2023-11-23 15:50
文章标签 算法 随机 森林 孤立

本文主要是介绍孤立随机森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孤立森林(Isolation Forest)算法是西瓜书作者周志华老师的团队研究开发的算法,一般用于结构化数据的异常检测。

异常的定义

针对于不同类型的异常,要用不同的算法来进行检测,而孤立森林算法主要针对的是连续型结构化数据中的异常点。

使用孤立森林的前提是,将异常点定义为那些 “容易被孤立的离群点” —— 可以理解为分布稀疏,且距离高密度群体较远的点。从统计学来看,在数据空间里,若一个区域内只有分布稀疏的点,表示数据点落在此区域的概率很低,因此可以认为这些区域的点是异常的。

也就是说,孤立森林算法的理论基础有两点:

  • 异常数据占总样本量的比例很小;
  • 异常点的特征值与正常点的差异很大。
    上图中,中心的白色空心点为正常点,即处于高密度群体中。四周的黑色实心点为异常点,散落在高密度区域以外的空间。
    上图中,中心的白色空心点为正常点,即处于高密度群体中。四周的黑色实心点为异常点,散落在高密度区域以外的空间。

使用场景

孤立森林算法是基于 Ensemble 的异常检测方法,因此具有线性的时间复杂度。且精准度较高,在处理大数据时速度快,所以目前在工业界的应用范围比较广。常见的场景包括:网络安全中的攻击检测、金融交易欺诈检测、疾病侦测、噪声数据过滤(数据清洗)等。

与其他异常检测算法的差异

孤立森林中的 “孤立” (isolation) 指的是 “把异常点从所有样本中孤立出来”,论文中的原文是 “separating an instance from the rest of the instances”.

大多数基于模型的异常检测算法会先 ”规定“ 正常点的范围或模式,如果某个点不符合这个模式,或者说不在正常范围内,那么模型会将其判定为异常点。

孤立森林的创新点包括以下四个:

  1. Partial models:在训练过程中,每棵孤立树都是随机选取部分样本;
  2. No distance or density measures:不同于 KMeans、DBSCAN 等算法,孤立森林不需要计算有关距离、密度的指标,可大幅度提升速度,减小系统开销;
  3. Linear time complexity:因为基于 ensemble,所以有线性时间复杂度。通常树的数量越多,算法越稳定;
  4. Handle extremely large data size:由于每棵树都是独立生成的,因此可部署在大规模分布式系统上来加速运算。

算法思想

想象这样一个场景,我们用一个随机超平面对一个数据空间进行切割,切一次可以生成两个子空间(也可以想象用刀切蛋糕)。接下来,我们再继续随机选取超平面,来切割第一步得到的两个子空间,以此循环下去,直到每子空间里面只包含一个数据点为止。
在这里插入图片描述
直观上来看,我们可以发现,那些密度很高的簇要被切很多次才会停止切割,即每个点都单独存在于一个子空间内,但那些分布稀疏的点,大都很早就停到一个子空间内了。

训练-测试过程

单棵树的训练

1 从训练数据中随机选择 Ψ 个点作为子样本,放入一棵孤立树的根节点;
2 随机指定一个维度,在当前节点数据范围内,随机产生一个切割点 p —— 切割点产生于当前节点数据中指定维度的最大值与最小值之间;
3 此切割点的选取生成了一个超平面,将当前节点数据空间切分为2个子空间:把当前所选维度下小于 p 的点放在当前节点的左分支,把大于等于 p 的点放在当前节点的右分支;
4 在节点的左分支和右分支节点递归步骤 2、3,不断构造新的叶子节点,直到叶子节点上只有一个数据(无法再继续切割) 或树已经生长到了所设定的高度 。(至于为什么要对树的高度做限制,后续会解释)
在这里插入图片描述
上图就是对子样本进行切割训练的过程,左图的xi 处于密度较高的区域,因此切割了十几次才被分到了单独的子空间,而右图的 x0落在边缘分布较稀疏的区域,只经历了四次切分就被 “孤立” 了。

整合全部孤立树的结果

由于切割过程是完全随机的,所以需要用 ensemble 的方法来使结果收敛,即反复从头开始切,然后计算每次切分结果的平均值。

获得 t 个孤立树后,单棵树的训练就结束了。接下来就可以用生成的孤立树来评估测试数据了,即计算异常分数 s。 对于每个样本 x,需要对其综合计算每棵树的结果,通过下面的公式计算异常得分:
在这里插入图片描述
h(x) 为 x 在每棵树的高度,c(Ψ) 为给定样本数 Ψ 时路径长度的平均值,用来对样本 x 的路径长度 h(x) 进行标准化处理。
在这里插入图片描述
上图为孤立树的数目与每个样本点的平均高度的关系,可以看到数目选取在 10 以内时,结果非常不稳定,当数目达到 100 后就趋于收敛了。因此我们在使用过程中,树的棵树设置为 100 即可,如果棵树过少结果可能不稳定,若过多则白白浪费了系统开销。

异常得分

如果异常得分接近 1,那么一定是异常点;

如果异常得分远小于 0.5,那么一定不是异常点;

如果异常得分所有点的得分都在 0.5 左右,那么样本中很可能不存在异常点。

总结

孤立森林算法总共分两步:

  • 训练 iForest:从训练集中进行采样,构建孤立树,对森林中的每棵孤立树进行测试,记录路径长度;
  • 计算异常分数:根据异常分数计算公式,计算每个样本点的 anomaly score。
    两个坑

在使用孤立森林进行实际异常检测的过程中,可能有两个坑:

  • 若训练样本中异常样本的比例较高,可能会导致最终结果不理想,因为这违背了该算法的理论基础;
  • 异常检测跟具体的应用场景紧密相关,因此算法检测出的 “异常” 不一定是实际场景中的真正异常,所以在特征选择时,要尽量过滤不相关的特征。

一个生动的例子

因为我比较喜欢武林外传,而且这部剧中每个人的特点都很鲜明,所以拿过来做例子。以下是 9 位主要角色的基本数据:
在这里插入图片描述
接下来,我们模拟一棵孤立树的训练过程,把这九个人作为一个子样本放入一棵孤立树的根节点:
在这里插入图片描述

首先随机选择到的维度是 “年龄”,然后随机选择一个切割点 18,小于 18 岁的只有莫小贝一个人,所以她最先被 “孤立” 出来了;第二个随机选择的特征是 ”体重“,只有大嘴高于 80 公斤,所以也被 ”孤立“ 了;第三个选择 ”文化程度“ 这个特征,由于只有秀才的文化程度为高,于是被 ”孤立“ 出来了 ……

假设我们设定树的高度为 3,那么这棵树的训练就结束了。在这棵树上,莫小贝的路径长度为 1,大嘴为 2,秀才为 3,单看这一棵树,莫小贝的异常程度最高。但很显然,她之所以最先被孤立出来,与特征被随机选择到的顺序有关,所以我们通过对多棵树进行训练,来去除这种随机性,让结果尽量收敛。

这篇关于孤立随机森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419018

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/