python抢茅台_3、Python 数据分析-茅台酒业股票分析

2023-11-23 14:50

本文主要是介绍python抢茅台_3、Python 数据分析-茅台酒业股票分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求:股票分析

使用tushare包获取某股票的历史行情数据。

tushare财经数据接口包,基于该模块可以获取任意股票的历史交易数据

pip install tushare

输出该股票所有收盘比开盘上涨3%以上的日期。

输出该股票所有开盘比前日收盘跌幅超过2%的日期。

假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

import pandas as pd

import tushare as ts

df = ts.get_k_data(code='600519',start='1990')#600519茅台股票接口

1774189-20200629013507739-1579412029.png

#df的持久化存储

df.to_csv('maotai.csv')

#读取本地数据

df = pd.read_csv('./maotai.csv')

df.head(5)

1774189-20200629013526002-2109270365.png

#删除Unnamed: 0列

df.drop(labels='Unnamed: 0',axis=1,inplace=True)

1774189-20200629013547138-2014864125.png

#查看每一列的数据类型,哪些列中存在空值

df.info()

>>>

RangeIndex: 4406 entries, 0 to 4405

Data columns (total 7 columns):

date 4406 non-null object

open 4406 non-null float64

close 4406 non-null float64

high 4406 non-null float64

low 4406 non-null float64

volume 4406 non-null float64

code 4406 non-null int64

dtypes: float64(5), int64(1), object(1)

memory usage: 241.0+ KB

在观察数据的时候,如果发现时间数据为字符串类型则需要将其转换成时间序列类型

#装换成时间序列类型

df['date'] = pd.to_datetime(df['date'])

#将date列作为源数据的行索引

df.set_index('date',inplace=True)

1774189-20200629013604298-497264963.png

#将布尔值作为源数据的索引

df.loc[[True,False,True]]

1、输出该股票所有收盘比开盘上涨3%以上的日期

#(收盘-开盘)/开盘 > 0.03

(df['close'] - df['open']) / df['open'] > 0.03

#经验:在df的处理过程中,如果遇到了一组布尔值,下一步马上将布尔值作为源数据的行索引

#df.loc[(df['close'] - df['open']) / df['open'] > 0.03] #可以获取true对应行数据

df.loc[(df['close'] - df['open']) / df['open'] > 0.03].index

>>>

DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',

'2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',

'2004-01-05', '2004-01-14',

...

'2019-09-12', '2019-09-18', '2020-02-11', '2020-03-02',

'2020-03-05', '2020-03-10', '2020-04-02', '2020-04-22',

'2020-05-06', '2020-05-18'],

dtype='datetime64[ns]', name='date', length=311, freq=None)

2、输出该股票所有开盘比前日收盘跌幅超过2%的日期。

#(开盘-前日收盘)/前日收盘 < -0.02

#(开盘-前日收盘)/前日收盘 < -0.02

# (df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02

df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02].index

>>>

DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',

'2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',

'2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',

'2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',

'2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',

'2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',

'2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',

'2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',

'2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',

'2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',

'2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',

'2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',

'2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',

'2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',

'2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',

'2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',

'2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',

'2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',

'2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',

'2018-10-30', '2019-05-06', '2019-05-08', '2019-10-16',

'2020-01-02', '2020-02-03', '2020-03-13', '2020-03-23'],

dtype='datetime64[ns]', name='date', freq=None)

3、假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

买入(开盘)

一个完整的年需要买入12手==1200只

卖出(收盘)

一个完整的年需要卖出1次股票,一次卖出1200只

特殊情况:2020年只可以买入股票无法卖出股票,没有及时卖出的股票的实际价值也要计算到总收益中

new_df = df['2010':'2020']

#买股票

#1.获取每一个完整的年对应每个月第一个交易日的行数据,行数据中可以提取出开盘价(买入股票的单价)

#实现的技术:数据的重新取样

#new_df.resample(rule='M') #将每一年中每一个对应的数据取出,M表示月

new_df.resample(rule='M').first() #将月份数据中的第一行数据取出

#买入股票花费的总钱数

cost_money = (new_df.resample(rule='M').first()['open']).sum() * 100

>>>

4490117.100000001

#统计出每年最后一天

#new_df.resample(rule='A')#将2010-2020年,每一年的数据取出,A表示年

new_df.resample(rule='A').last()[:-1] #每一年最后一个交易日对应的行数据

1774189-20200629013619161-1709700699.png

#卖出股票的钱数

recv_money = new_df.resample(rule='A').last()[:-1]['close'].sum() *1200

>>>

4391179.2

#剩余股票的价值也要计算到总收益中,剩余股票价值的单价可以用最近一天的收盘价来表示

last_price = new_df[-1:]['close'][0]

last_monry = 6*100*last_price

#总收益

last_monry + recv_money - cost_money

777068.0999999996

注意:上述对数据进行重新取样操作的前提,源数据中行索引为时间序列类型

总结

df的持久化存储

df.to_xxx():可以将df中的值进行任意形式的持久化存储

df的加载:

pd.read_xxx():可以将外部数据加载到df中

如何将字符串形式的时间值转换成时间序列类型

pd.to_datetime(df['date])

如何将某一列作为源数据的行索引

df.set_index('colName')

如何将Series进行整体的上下移动

Series.shift(1)

整数表示下移,负数表示上移

数据的重新取样

df.resample(rule='')

df.resample(rule='').last/first()

可以直接将布尔值作为df的行索引,就可以取出True对应的行数据。

这篇关于python抢茅台_3、Python 数据分析-茅台酒业股票分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418681

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提