Pyqt5 多标签_看过上百部片子的这个人教你视频标签算法解析

2023-11-23 11:40

本文主要是介绍Pyqt5 多标签_看过上百部片子的这个人教你视频标签算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文由云+社区发表

随着内容时代的来临,多媒体信息,特别是视频信息的分析和理解需求,如图像分类、图像打标签、视频处理等等,变得越发迫切。目前图像分类已经发展了多年,在一定条件下已经取得了很好的效果。本文因实际产品需求,主要探讨一下视频打标签的问题。

查阅了部分资料,笔者拙见,打标签问题无论是文本、图像和视频,涉及到较多对内容的“理解”,目前没有解决得很好。主要原因有以下一些方面,标签具有多样性,有背景内容标签,细节内容标签,内容属性标签,风格标签等等;一些标签的样本的实际表现方式多种多样,样本的规律不明显则不利于模型学习;标签问题没有唯一的标准答案,也存在一定的主观性,不好评估的问题则更不利于模型学习。

依然笔者拙见,视频打标签问题目前还没有很好的解决办法,也处于探索阶段。方法上主要有以下一些思路:可以从视频角度出发,可以从图像角度出发;可以利用caption生成的思路,可以转化为多分类问题。

直接从视频角度出发,即从视频整体的角度出发,提取图像帧,甚至字幕或者语音信息,进一步处理得出视频标签的结果。Deep Learning YouTube Video Tags,这篇文章提出一个hybrid CNN-RNN结构,将视频的图像特征,以及利用LSTM模型对标签考虑标签相关性和依赖性的word embeddings,联合起来,网络结构如下图。

d32e6ef18c9cdf9efa5a05210e998a23.png

Large-scale Video Classification with Convolutional Neural Networks提出了几种应用于视频分类的卷积神经网络结构,在网络中体现时空信息。single frame:就是把一帧帧的图像分别输入到CNN中去,和普通的处理图像的CNN没有区别;late fution:把相聚L的两帧图像分别输入到两个CNN中去,然后在最后一层连接到同一个full connect的softmax层上去;early fution:把连续L帧的图像叠在一起输入到一个CNN中去;

slow fution:通过在时间和空间维度增加卷积层,从而提供更多的时空全局信息。如下图所示:

ce3583fce42919d325bf6beede8792c8.png

另一方面,为了提高训练速度,这篇文章还提出Multiresolution CNNs,分别将截取中间部分的图像和缩放的图像作为网络的输入,如下图所示:

8fa6a39e603a065abf68d64bbad5b31b.png

这篇文章主要研究了卷积神经网络在大规模视频分类中的应用和表现。通过实验,文章总结网络细节对于卷积神经网络的效果并不非常敏感。但总的来说,slow fusion网络结构的效果更好。

从图像角度出发,即从视频中提取一些帧,通过对帧图像的分析,进一步得出视频标签的结果。对图像的分析,也可以转化为图像打标签或者图像描述问题。Visual-Tex: Video Tagging using Frame Captions,先从视频中提取固定数量的帧,用训练好的image to caption模型对图像生成描述。然后将文本描述组合起来,提取文本特征并用分类方法进行分类,得到tag结果。这篇文章对生成的描述,对比了多种不同的特征和多种不同的分类方法。可见,图像打标签对视频打标签有较大的借鉴意义。另一种思路,CNN-RNN: A Unified Framework for Multi-label Image Classification可以看作将图像打标签问题转化为多分类问题。将卷积神经网络应用到多标签分类问题中的一个常用方法是转化为多个单标签的分类问题,利用ranking loss或者cross-entropy loss进行训练。但这种方法往往忽略了标签之间的联系或者标签之间语义重复的问题。这篇文章设计了CNN-RNN的网络结构里,并利用attention机制,更好地体现标签间的相关性、标签间的冗余信息、图像中的物体细节等。网络结构主要如下图所示,主要包括两个部分:CNN部分提取图像的语义表达,RNN部分主要获取图像和标签之间的关系和标签之间的依赖信息。

22b80201697274c783effda9ba1ffb37.png

针对空间部分短视频数据,笔者设计了一个简单的视频打标签的方案,并进行了实验。由于预处理和算法细节的很多进一步改进和完善工作还没有进行,在此只是提出一种思路和把实验结果简单地做个分享。

方法介绍:

整体思路:图片打标签 => 视频打标签

也就是说,对视频提取帧,得到视频中的图片;然后对图片进行打标签;最后将视频中帧图片的标签进行整合,得到视频标签。

1、从图片描述说起:

图片描述典型框架:利用deep convolutional neural network来encode 输入图像,然后利用Long Short Term Memory(LSTM) RNN decoder来生成输出文本描述。

f3117a78bb41b7bed8f29090bf8d653c.png

2、在打标签任务中,我们把标签或类别组合,构造成“描述”:

一级类别+二级类别+标签(重复的词语进行去重)

3、利用预训练和强化学习,对训练样本图片和标签构造模型映射。

aa379a5340ed258d14291de7f0a169ca.png

《Self-critical Sequence Training for Image Captioning》

网络模型有三种:fc model;topdown model;att2in model;模型细节见论文。

一般地,给定输入图像和输出文本target,,模型训练的过程为最小化cross entropy loss(maximum-likelihood training objective):

f6c275052e0f8aba5fbe37797e5a787d.png

利用self-critical policy gradient training algorithm:

ca202c490860ae551ec0b7fa0eba3b40.png

其中,是reward funtion

6902add2b9e278f5bf63a6c6108f9bfb.png

通过根据每一个decoding time step的概率分布进行采样获得,是baseline output,通过最大化每一个decoding time step的概率分布输出获得,也就是a greedy search。论文里提到,利用CIDEr metric作为reward function,效果最好。

4、根据视频帧图片的标签,对视频打标签。具体有两种思路:

记录视频提取的所有帧图片中每一个出现的标签,以及标签出现的次数(有多少帧图片

被打上了这个标签)。按照出现次数排序。

1.将帧图片的最多前n个标签,输出为视频标签。

2.将帧图片中,出现次数大于阈值c的标签,,输出为视频标签。

数据示例:

922f40f9ef273e62e0e572d800f11d19.png

其中1class表示一级类别,2class表示二级类别。

实验结果示例:

截取一些实验结果展示如下,其中output指模型输出的结果,reference指人工标定的参考结果。

cdd72b6eda11f7e542299a2088147217.png

06fe053caba64377ab8a6ab9b588f353.png

总的来说,游戏类视频的数据量最大,效果较好;但具体不同英雄的视频数据如果不平衡,也会影响算法结果。其他类型视频数据不算太稀疏的效果也不错,长尾视频的效果不行。

总结:

数据预处理、模型结构、损失函数、优化方法等各方面,都还有很多值得根据视频打标签应用的实际情况进行调整的地方。后续再不断优化。方法和实验都还粗糙,希望大家多批评指导。

此文已由作者授权腾讯云+社区在各渠道发布

获取更多新鲜技术干货,可以关注我们腾讯云技术社区-云加社区官方号及知乎机构号

这篇关于Pyqt5 多标签_看过上百部片子的这个人教你视频标签算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417683

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.