3D点云 (Lidar)检测入门篇 : PointPillars PyTorch实现

2023-11-23 10:20

本文主要是介绍3D点云 (Lidar)检测入门篇 : PointPillars PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者丨千百度@知乎

来源丨https://zhuanlan.zhihu.com/p/521277176

编辑丨3D视觉工坊

776e83256f596d6914663283f843168b.png

基于Lidar的object检测模型包括Point-based [PointRCNN(CVPR19), IA-SSD(CVPR22)等], Voxel-based [PointPillars(CVPR19), CenterPoint(CVPR21)等],Point-Voxel-based [PV-RCNN(CVPR20), HVPR(CVPR21)等]和Multi-view-based[PIXOR(CVPR18)等]等。本博客主要记录,作为菜鸟的我,在KITTI数据集上(3类)基于PyTorch实现PointPillars的一些学习心得, 训练和测试的pipeline如Figure 1所示。这里按照深度学习算法的流程进行展开: 数据 + 网络结构 + 预测/可视化 + 评估,和实现的代码结构是一一对应的,完整代码已更新于github:https://github.com/zhulf0804/PointPillars

[说明 - 代码的实现是通过阅读mmdet3dv0.18.1源码, 加上自己的理解完成的。因为不会写cuda, 所以cuda代码和少量代码是从mmdet3dv0.18.1复制过来的。]

d234e50356f4625fc53462f7f97cc28e.png

一、KITTI 3D检测数据集

1.1 数据集信息:

·KITTI数据集论文: Are we ready for autonomous driving? the kitti vision benchmark suite [CVPR 2012] 和 Vision meets robotics: The kitti dataset [IJRR 2013]

·KITTI数据集下载(下载前需要登录): point cloud(velodyne, 29GB), images(image_2, 12 GB), calibration files(calib, 16 MB)和labels(label_2, 5 MB)。数据velodyne, calib 和 label_2的读取详见utils/io.py

1.2 ground truth label信息 [file]

对每一帧点云数据, label是 n个15维的向量, 组成了8个维度的信息。

7eb5a23263740b23f8c1fd0dcf72d15c.png

1)训练时主要用到的是类别信息(type) 和3d bbox 信息 (location, dimension, rotation_y).

2)观测角(alpha)和旋转角(rotation_y)的区别和联系可以参考博客blog.csdn.net/qq_161375。

1.3 坐标系的变换

因为gt label中提供的bbox信息是Camera坐标系的,因此在训练时需要使用外参等将其转换到Lidar坐标系; 有时想要把3d bbox映射到图像中的2d bbox方便可视化,此时需要内参。具体转换关系如Figure 2。坐标系转换的代码见utils/process.py

771ff051991ab75cbce5056bf7428fbc.png

1.4 数据增强

数据增强应该是Lidar检测中很重要的一环。发现其与2D检测中的增强差别较大,比如3D中会做database sampling(我理解的是把gt bbox进行cut-paste), 会做碰撞检测等。在本库中主要使用了采用了5种数据增强, 相关代码在dataset/data_aug.py

  • 采样gt bbox并将其复制到当前帧的点云

    • 从Car, Pedestrian, Cyclist的database数据集中随机采集一定数量的bbox及inside points, 使每类bboxes的数量分别达到15, 10, 10.

    • 将这些采样的bboxes进行碰撞检测, 通过碰撞检测的bboxes和对应labels加到gt_bboxes_3d, gt_labels

    • 把位于这些采样bboxes内点删除掉, 替换成bboxes内部的点.

  • bbox 随机旋转平移

    • 以某个bbox为例, 随机产生num_try个平移向量t和旋转角度r, 旋转角度可以转成旋转矩阵(mat).

    • 对bbox进行旋转和平移, 找到num_try中第一个通过碰撞测试的平移向量t和旋转角度r(mat).

    • 对bbox内部的点进行旋转和平移.

    • 对bbox进行旋转和平移.

  • 随机水平翻转

    • points水平翻转

    • bboxes水平翻转

  • 整体旋转/平移/缩放

    • object旋转, 缩放和平移

    • point旋转, 缩放和平移

  • 对points进行shuffle: 打乱点云数据中points的顺序。

Figure3是对上述前4种数据增强的可视化结果。

5ee72bda435d9fe337a4615ee972b6b6.png

二、网络结构与训练

0b76a03c28710a9fd3e22bd9ef60ea8d.png

0c45bfdf8ff5dd8c11651940d86bd353.png

2.2 GT值生成

Head的3个分支基于anchor分别预测了类别, bbox框(相对于anchor的偏移量和尺寸比)和旋转角度的类别, 那么在训练时, 如何得到每一个anchor对应的GT值呢 ? 相关代码见model/anchors.py

3ee4e69972bf4deff63bf12e2957a53f.png

6d4c13167432d5dcbced558c03026436.png

2.3 损失函数和训练

现在知道了类别分类head, bbox回归head和朝向分类head的预测值和GT值, 接下来介绍损失函数。相关代码见loss/loss.py

46974f66f6e532a8a7aed807c3575de7.png

总loss = 1.0*类别分类loss + 2.0*回归loss + 2.0*朝向分类loss。

模型训练: 优化器torch.optim.AdamW(), 学习率的调整torch.optim.lr_scheduler.OneCycleLR(); 模型共训练160epoches。

三、单帧预测和可视化

基于Head的预测值和anchors, 如何得到最后的候选框呢 ? 相关代码见model/pointpillars.py。一般经过以下几个步骤:

基于预测的类别分数的scores, 选出nms_pre (100) 个anchors: 每一个anchor具有3个scores, 分别对应属于每一类的概率, 这里选择这3个scores中最大值作为该anchor的score; 根据每个anchor的score降序排序, 选择anchors。

c20e4c0f85f31be0cf07d6cfcfb1b42e.png

3. 逐类进行以下操作:

  • 过滤掉类别score 小于 score_thr (0.1) 的bboxes

  • 基于nms_thr (0.01), nms过滤掉重叠框:

9a78742e19aa5e005227ee189fb2c3dc.png

另外, 基于Open3d实现了在Lidar和Image里3d bboxes的可视化, 相关代码见test.pyutils/vis_o3d.py。下图是对验证集中id=000134的数据进行可视化的结果。

9eb999fa0dd0c5e26467f76f6f71b436.png 01ea47230d7cc318dfc34a3d9de22236.png

四、模型评估

评估指标同2D检测类似, 也是采用AP, 即Precison-Recall曲线下的面积。不同的是, 在3D中可以计算3D bbox, BEV bbox 和 (2D bbox, AOS)的AP。

先说明一下AOS指标和Difficulty的定义。

ed84b70235fab8d4bd472a89809ce94a.png

Difficulty: 根据2d框的高度, 遮挡程度和截断程度, 把bbox分为 difficulty=0, 1, 2 或 其它。相关定义具体查看代码pre_process_kitti.py#L16-32

这里以3D bbox为例, 介绍类别=Cardifficulty=1 AP的计算。注意, difficulty=1的数据实际上是指difficulty<=1的数据; 另外这里主要介绍大致步骤, 具体实现见evaluate.py

1.计算3D IoU (utils/process.py iou3d(bboxes1, bboxes2)), 用于判定一个det bbox是否和gt bbox匹配上 (IoU > 0.7)。

2.根据类别=Cardifficulty=1选择gt bboxes和det bboxes。

  • gt bboxes: 选择类别=Cardifficulty<=1的bboxes;

  • det bboxes: 选择预测类别=Car的bboxes。

3. 确定P-R曲线中的点对(Pi, Ri)对应的score阈值。

ba36830bbe9e7ff1b2845ef5be6e60d5.png

五、总结

点云检测, 相比于点云中其它任务(分类, 分割和配准等), 逻辑和代码都更加复杂, 但这并不是体现在网络结构上, 更多的是体现在数据增强, Anchors和GT生成, 单帧推理等。

点云检测, 相比于2D图像检测任务, 不同的是坐标系变换, 数据增强(碰撞检测, 点是否在立方体判断等), 斜长方体框IoU的计算等; 评估方式因为考虑到DontCare, difficulty等, 也更加复杂一些.

初次接触基于KITTI的3D检测, 如有理解错误的, 还请指正; 内容太多了, 如有遗漏, 待以后补充。

本文仅做学术分享,如有侵权,请联系删文。

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

02a0b2b23f7696e764594e8a05bd8e72.png

▲长按加微信群或投稿

058ede5311375727e7fea5dce5923b57.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

a857bc7f69ab5199e8b82c3328cddf62.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

这篇关于3D点云 (Lidar)检测入门篇 : PointPillars PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417249

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文