基于Pytorch肺部感染识别案例(采用ResNet网络结构)

2023-11-23 08:30

本文主要是介绍基于Pytorch肺部感染识别案例(采用ResNet网络结构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、整体流程

1. 数据集下载地址:https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/download

2. 数据集展示

案例主要流程:

第一步:加载预训练模型ResNet,该模型已在ImageNet上训练过。

第二步:冻结预训练模型中低层卷积层的参数(权重)。

第三步:用可训练参数的多层替换分类层。

第四步:在训练集上训练分类层。

第五步:微调超参数,根据需要解冻更多层。

ResNet 网络结构图

二、显示图片功能

#1加载库
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
import os
from torchvision.utils import make_gridfrom torch.utils.data import DataLoader
#2、定义一个方法:显示图片
def img_show(inp, title=None):plt.figure(figsize=(14,3))inp = inp.numpy().transpose((1,2,0)) #转成numpy,然后转置mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224,0.225])inp = std * inp + meaninp = np.clip(inp, 0, 1)plt.imshow(inp)if title is not None:plt.title(title)plt.pause(0.001)plt.show()
def main():pass#3、定义超参数BATCH_SIZE = 8DEVICE = torch.device("gpu" if torch.cuda.is_available() else "cpu")#4、图片转换    使用字典进行转换data_transforms = {'train': transforms.Compose([transforms.Resize(300),transforms.RandomResizedCrop(300) ,#随机裁剪transforms.RandomHorizontalFlip(),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化]),'val': transforms.Compose([transforms.Resize(300),transforms.CenterCrop(256),transforms.ToTensor(), #转为张量transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) #正则化])}#5、操作数据集# 5.1、数据集路径data_path = "D:/chest_xray/"#5.2、加载数据集的train valimg_datasets = { x : datasets.ImageFolder(os.path.join(data_path,x),data_transforms[x]) for x in ["train","val"]}#5.3、为数据集创建一个迭代器,读取数据dataloaders = {x : DataLoader(img_datasets[x], shuffle=True,batch_size= BATCH_SIZE) for x in ["train","val"]}# 5.4、训练集和验证集的大小(图片的数量)data_sizes = {x : len(img_datasets[x]) for x in ["train","val"]}# 5.5、获取标签类别名称 NORMAL 正常 -- PNEUMONIA 感染target_names = img_datasets['train'].classes#6 显示一个batch_size 的图片(8张图片)#6.1 读取8张图片datas ,targets = next(iter(dataloaders['train'])) #iter把对象变为可迭代对象,next去迭代#6.2、将若干正图片平成一副图像out = make_grid(datas, norm = 4, padding = 10)

这篇关于基于Pytorch肺部感染识别案例(采用ResNet网络结构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416654

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

C#中的Drawing 类案例详解

《C#中的Drawing类案例详解》文章解析WPF与WinForms的Drawing类差异,涵盖命名空间、继承链、常用类及应用场景,通过案例展示如何创建带阴影圆角矩形按钮,强调WPF的轻量、可动画特... 目录一、Drawing 是什么?二、典型用法三、案例:画一个“带阴影的圆角矩形按钮”四、WinForm

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多