【建模算法】TOPSIS法(Python实现)

2023-11-23 04:00

本文主要是介绍【建模算法】TOPSIS法(Python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【建模算法】TOPSIS法(Python实现)

Topsis法,全称为Technique for Order Preference by Similarity to an Ideal Solution,中文常翻译为“优劣解距离法”或“逼近理想解排序法”,该方法是一种通过比较样本值与理想值的距离实现综合评价的方法。能够根据现有的数据,对个体进行评价排序。TOPSIS算法是直接用来评价的,它也可以和赋权方法一起使用。

逼近理想解排序法(TOPSIS),采用相对接近度来表征各个评价对象与参考点的距离。首先在空间确定出参考点,包括最优和最劣点,然后计算各个评价对象与参考点的距离,与最优点越近或与最劣点越远说明被评价对象的综合特性越好。

一、问题描述

现需要对投标者进行综合评价,实现某招标公司的招标项目决策。现有A、B、C、D四个投标者,招标公司对它们的总价、人力、方案、设备级别、公司级别、能力成熟度分别进行评价,觉得哪个投标者应该中标?投标单位的各项指标数量与分值如下:
在这里插入图片描述

二、TOPSIS法评价步骤

step0:指标正向化

不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n , 设数据矩阵内元素,经过指标正向化处理过后的元素为 x i j ′ {x}^{\prime}_{ij} xij

  • 越小越优型指标:

x i j ′ = m a x ( x i j ) − x i j x^{\prime}_{ij}=max{(x_{ij})}-x_{ij} xij=max(xij)xij

其他处理方法也可,只要指标性质不变即可

  • 某点最优型指标:

    设最优点为a, 当a=90时E最优。
    在这里插入图片描述

​ 其他处理方法也可,只要指标性质不变即可

  • 越大越优型指标:

x i j ′ = x i j x^{\prime}_{ij}=x_{ij} xij=xij

此类指标可以不用处理,想要处理也可,只要指标性质不变

step1:数据标准化

因为本案例数据指标都是正向指标,不需要进行指标正向化,若有其他性质指标应把它们都正向化。

本案例直接进入数据标准化,每个指标的数量级不一样,需要把它们化到同一个范围内比较。可以用最大最小值标准化方法。本案例使用另一方法。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n ,设数据矩阵内元素 x i j x_{ij} xij,标准化处理过后的元素为 x i j ′ x^{\prime}_{ij} xij
x i j ′ = x i j ∑ i = 1 m x i j 2 x^{\prime}_{ij}=\frac{x_{ij}}{\sqrt{\sum^m_{i=1}x^2_{ij}}} xij=i=1mxij2 xij

step2:计算加权后的矩阵

之前有讲过层次分析法、熵权法、变异系数法,都是获取权重的方法,可以翻看之前的文章。现设得到指标的权重为 w i w_i wi ,加权重后的数据为 r i j r_{ij} rij

每个指标的数量级不一样,需要把它们化到同一个范围内比较。上一篇建模算法用到了最大最小值标准化方法。此篇可以用一个新的标准化方法,处理如下:

设标准化后的数据矩阵元素为 r i j r_{ij} rij ,由上可得指标正向化后数据矩阵元素为 x i j ′ x^{\prime}_{ij} xij
r i j = w j x i j ′ r_{ij}=w_jx^{\prime}_{ij} rij=wjxij

step3:计算矩阵和最值之间的距离

处理过后可以构成数据矩阵 R = ( r i j ) m × n R=(r_{ij})_{m\times n} R=(rij)m×n

  • 定义每个指标即每列的最大值为 r j + r^+_j rj+
    r j + = m a x ( r 1 j , r 2 j , . . . , r n j ) r^+_{j}=max(r_{1j},r_{2j},...,r_{nj}) rj+=max(r1j,r2j,...,rnj)

  • 定义每个指标即每列的最小值为 r j − r^{-}_{j} rj
    r j − = m i n ( r 1 j , r 2 j , . . . , r n j ) r^{-}_{j}=min(r_{1j},r_{2j},...,r_{nj}) rj=min(r1j,r2j,...,rnj)

  • 定义第i个对象与最大值距离为 d i + d^{+}_{i} di+
    d i + = ∑ j = 1 n ( r j + − r i j ) 2 d^+_i=\sqrt{\sum^n_{j=1}(r^+_j-r_{ij})^2} di+=j=1n(rj+rij)2

  • 定义第i个对象与最小值距离为 d i − d^-_i di
    d i − = ∑ j = 1 n ( r j − − r i j ) 2 d^{-}_{i}=\sqrt{\sum^n_{j=1}(r^{-}_{j}-r_{ij})^2} di=j=1n(rjrij)2

step4:计算评分

得分为:
S c o r e i = d i − d i + + d i − Score_i=\frac{d^-_i}{d^+_i+d^-_i} Scorei=di++didi
明显可以看出 0 ≤ S c o r e i ≤ 1 0\leq Score_i\leq 1 0Scorei1 ,当 S c o r e i Score_i Scorei越大时,

d i + d^+_i di+越小,说明指标离最大值距离越小,越接近最大值。

三、求解结果

结果如下:
在这里插入图片描述

四、实现代码

Python源码:

import pandas as pd
import numpy as np#读取数据
data=pd.read_excel('投标单位各项指标和分值.xlsx')#数据标准化
label_need=data.keys()[1:]
data1=data[label_need].values
[m,n]=data1.shape
data2=data1.copy().astype('float')
for j in range(0,n):data2[:,j]=data1[:,j]/np.sqrt(sum(np.square(data1[:,j])))#计算加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]   #使用求权重的方法求得,参见文献1
R=data2*w#计算最大最小值距离
r_max=np.max(R,axis=0)   #每个指标的最大值
r_min=np.min(R,axis=0)   #每个指标的最小值
d_z = np.sqrt(np.sum(np.square((R -np.tile(r_max,(m,1)))),axis=1))  #d+向量
d_f = np.sqrt(np.sum(np.square((R -np.tile(r_min,(m,1)))),axis=1))  #d-向量  #计算得分
s=d_f/(d_z+d_f )
Score=100*s/max(s)
for i in range(0,len(Score)):print(f"第{i+1}个投标者百分制得分为:{Score[i]}") 

参考文献:

【1】陈雷,王延章.基于熵权系数与TOPSIS集成评价决策方法的研究[J].控制与决策,2003(04):456-459.

这篇关于【建模算法】TOPSIS法(Python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415197

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time