【建模算法】TOPSIS法(Python实现)

2023-11-23 04:00

本文主要是介绍【建模算法】TOPSIS法(Python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【建模算法】TOPSIS法(Python实现)

Topsis法,全称为Technique for Order Preference by Similarity to an Ideal Solution,中文常翻译为“优劣解距离法”或“逼近理想解排序法”,该方法是一种通过比较样本值与理想值的距离实现综合评价的方法。能够根据现有的数据,对个体进行评价排序。TOPSIS算法是直接用来评价的,它也可以和赋权方法一起使用。

逼近理想解排序法(TOPSIS),采用相对接近度来表征各个评价对象与参考点的距离。首先在空间确定出参考点,包括最优和最劣点,然后计算各个评价对象与参考点的距离,与最优点越近或与最劣点越远说明被评价对象的综合特性越好。

一、问题描述

现需要对投标者进行综合评价,实现某招标公司的招标项目决策。现有A、B、C、D四个投标者,招标公司对它们的总价、人力、方案、设备级别、公司级别、能力成熟度分别进行评价,觉得哪个投标者应该中标?投标单位的各项指标数量与分值如下:
在这里插入图片描述

二、TOPSIS法评价步骤

step0:指标正向化

不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n , 设数据矩阵内元素,经过指标正向化处理过后的元素为 x i j ′ {x}^{\prime}_{ij} xij

  • 越小越优型指标:

x i j ′ = m a x ( x i j ) − x i j x^{\prime}_{ij}=max{(x_{ij})}-x_{ij} xij=max(xij)xij

其他处理方法也可,只要指标性质不变即可

  • 某点最优型指标:

    设最优点为a, 当a=90时E最优。
    在这里插入图片描述

​ 其他处理方法也可,只要指标性质不变即可

  • 越大越优型指标:

x i j ′ = x i j x^{\prime}_{ij}=x_{ij} xij=xij

此类指标可以不用处理,想要处理也可,只要指标性质不变

step1:数据标准化

因为本案例数据指标都是正向指标,不需要进行指标正向化,若有其他性质指标应把它们都正向化。

本案例直接进入数据标准化,每个指标的数量级不一样,需要把它们化到同一个范围内比较。可以用最大最小值标准化方法。本案例使用另一方法。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n ,设数据矩阵内元素 x i j x_{ij} xij,标准化处理过后的元素为 x i j ′ x^{\prime}_{ij} xij
x i j ′ = x i j ∑ i = 1 m x i j 2 x^{\prime}_{ij}=\frac{x_{ij}}{\sqrt{\sum^m_{i=1}x^2_{ij}}} xij=i=1mxij2 xij

step2:计算加权后的矩阵

之前有讲过层次分析法、熵权法、变异系数法,都是获取权重的方法,可以翻看之前的文章。现设得到指标的权重为 w i w_i wi ,加权重后的数据为 r i j r_{ij} rij

每个指标的数量级不一样,需要把它们化到同一个范围内比较。上一篇建模算法用到了最大最小值标准化方法。此篇可以用一个新的标准化方法,处理如下:

设标准化后的数据矩阵元素为 r i j r_{ij} rij ,由上可得指标正向化后数据矩阵元素为 x i j ′ x^{\prime}_{ij} xij
r i j = w j x i j ′ r_{ij}=w_jx^{\prime}_{ij} rij=wjxij

step3:计算矩阵和最值之间的距离

处理过后可以构成数据矩阵 R = ( r i j ) m × n R=(r_{ij})_{m\times n} R=(rij)m×n

  • 定义每个指标即每列的最大值为 r j + r^+_j rj+
    r j + = m a x ( r 1 j , r 2 j , . . . , r n j ) r^+_{j}=max(r_{1j},r_{2j},...,r_{nj}) rj+=max(r1j,r2j,...,rnj)

  • 定义每个指标即每列的最小值为 r j − r^{-}_{j} rj
    r j − = m i n ( r 1 j , r 2 j , . . . , r n j ) r^{-}_{j}=min(r_{1j},r_{2j},...,r_{nj}) rj=min(r1j,r2j,...,rnj)

  • 定义第i个对象与最大值距离为 d i + d^{+}_{i} di+
    d i + = ∑ j = 1 n ( r j + − r i j ) 2 d^+_i=\sqrt{\sum^n_{j=1}(r^+_j-r_{ij})^2} di+=j=1n(rj+rij)2

  • 定义第i个对象与最小值距离为 d i − d^-_i di
    d i − = ∑ j = 1 n ( r j − − r i j ) 2 d^{-}_{i}=\sqrt{\sum^n_{j=1}(r^{-}_{j}-r_{ij})^2} di=j=1n(rjrij)2

step4:计算评分

得分为:
S c o r e i = d i − d i + + d i − Score_i=\frac{d^-_i}{d^+_i+d^-_i} Scorei=di++didi
明显可以看出 0 ≤ S c o r e i ≤ 1 0\leq Score_i\leq 1 0Scorei1 ,当 S c o r e i Score_i Scorei越大时,

d i + d^+_i di+越小,说明指标离最大值距离越小,越接近最大值。

三、求解结果

结果如下:
在这里插入图片描述

四、实现代码

Python源码:

import pandas as pd
import numpy as np#读取数据
data=pd.read_excel('投标单位各项指标和分值.xlsx')#数据标准化
label_need=data.keys()[1:]
data1=data[label_need].values
[m,n]=data1.shape
data2=data1.copy().astype('float')
for j in range(0,n):data2[:,j]=data1[:,j]/np.sqrt(sum(np.square(data1[:,j])))#计算加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]   #使用求权重的方法求得,参见文献1
R=data2*w#计算最大最小值距离
r_max=np.max(R,axis=0)   #每个指标的最大值
r_min=np.min(R,axis=0)   #每个指标的最小值
d_z = np.sqrt(np.sum(np.square((R -np.tile(r_max,(m,1)))),axis=1))  #d+向量
d_f = np.sqrt(np.sum(np.square((R -np.tile(r_min,(m,1)))),axis=1))  #d-向量  #计算得分
s=d_f/(d_z+d_f )
Score=100*s/max(s)
for i in range(0,len(Score)):print(f"第{i+1}个投标者百分制得分为:{Score[i]}") 

参考文献:

【1】陈雷,王延章.基于熵权系数与TOPSIS集成评价决策方法的研究[J].控制与决策,2003(04):456-459.

这篇关于【建模算法】TOPSIS法(Python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415197

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco