本文主要是介绍20180612-A · FIFA World Cup Audience · ggplot2 geom_treemap 矩形树状图 treemapify 画图 图例 · R 语言数据可视化 案例 源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
所有作品合集传送门: Tidy Tuesday
2018 年合集传送门: 2018
FIFA World Cup Audience
欢迎来到ggplot2
的世界!
ggplot2
是一个用来绘制统计图形的 R 软件包。它可以绘制出很多精美的图形,同时能避免诸多的繁琐细节,例如添加图例等。
用 ggplot2 绘制图形时,图形的每个部分可以依次进行构建,之后还可以进行编辑。ggplot2 精心挑选了一系列的预设图形,因此在大部分情形下可以快速地绘制出许多高质量的图形。如果在格式上还有额外的需求,也可以利用 ggplot2 中的主题系统来进行定制, 无需花费太多时间来调整图形的外观,而可以更加专注地用图形来展现你的数据。
1. 一些环境设置
# 设置为国内镜像, 方便快速安装模块
options("repos" = c(CRAN = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
2. 设置工作路径
wkdir <- '/home/user/R_workdir/TidyTuesday/2018/2018-06-12_FIFA_World_Cup_Audience/src-a'
setwd(wkdir)
3. 加载 R 包
library(tidyverse)
library(treemapify)# 导入字体设置包
library(showtext)
# font_add_google() showtext 中从谷歌字体下载并导入字体的函数
# name 中的是字体名称, 用于检索, 必须严格对应想要字体的名字
# family 后面的是代码后面引用时的名称, 自己随便起
# 需要能访问 Google, 也可以注释掉下面这行, 影响不大
# font_families_google() 列出所有支持的字体, 支持的汉字不多
# http://www.googlefonts.net/
font_add_google(name = "Karantina", family = "ka")
font_add_google(name = "Cutive", family = "albert")
font_add_google(name = "ZCOOL XiaoWei", family = "zxw")
font_add_google(name = "Noto Sans HK", family = "nshk")# 后面字体均可以使用导入的字体
showtext_auto()
4. 加载数据
df_input <- readr::read_csv("../data/week11_fifa_audience.csv", show_col_types = FALSE)# 简要查看数据内容
glimpse(df_input)
## Rows: 191
## Columns: 6
## $ ...1 <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
## $ country <chr> "United States", "Japan", "China", "Germany", "Braz…
## $ confederation <chr> "CONCACAF", "AFC", "AFC", "UEFA", "CONMEBOL", "UEFA…
## $ population_share <dbl> 4.5, 1.9, 19.5, 1.2, 2.8, 0.9, 0.9, 0.9, 2.1, 0.7, …
## $ tv_audience_share <dbl> 4.3, 4.9, 14.8, 2.9, 7.1, 2.1, 2.1, 2.0, 3.1, 1.8, …
## $ gdp_weighted_share <dbl> 11.3, 9.1, 7.3, 6.3, 5.4, 4.2, 4.0, 4.0, 3.5, 3.1, …
# 检查数据的列名
colnames(df_input)
## [1] "...1" "country" "confederation"
## [4] "population_share" "tv_audience_share" "gdp_weighted_share"
5. 数据预处理
df_albert <- df_input %>% # mutate() 主要用于在数据框中添加新的变量, 这些变量是通过对现有的变量进行操作而形成的dplyr::mutate(tv_per_capital = tv_audience_share/population_share) %>%# 去除缺失值na.omit()# 简要查看数据内容
glimpse(df_albert)
## Rows: 140
## Columns: 7
## $ ...1 <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
## $ country <chr> "United States", "Japan", "China", "Germany", "Braz…
## $ confederation <chr> "CONCACAF", "AFC", "AFC", "UEFA", "CONMEBOL", "UEFA…
## $ population_share <dbl> 4.5, 1.9, 19.5, 1.2, 2.8, 0.9, 0.9, 0.9, 2.1, 0.7, …
## $ tv_audience_share <dbl> 4.3, 4.9, 14.8, 2.9, 7.1, 2.1, 2.1, 2.0, 3.1, 1.8, …
## $ gdp_weighted_share <dbl> 11.3, 9.1, 7.3, 6.3, 5.4, 4.2, 4.0, 4.0, 3.5, 3.1, …
## $ tv_per_capital <dbl> 0.9555556, 2.5789474, 0.7589744, 2.4166667, 2.53571…
6. 利用 ggplot2 + treemapify 绘图
# PS: 方便讲解, 我这里进行了拆解, 具体使用时可以组合在一起
gg <- df_albert %>% ggplot(aes(area = tv_audience_share,subgroup = confederation, fill = tv_per_capital, label = country))
# geom_treemap() 绘制矩形树状图
gg <- gg + geom_treemap(colour = "#FF4500")
gg <- gg + geom_treemap_text(colour = "#F5F5F5", fontface = "italic", min.size = 3.1, reflow = TRUE)
gg <- gg + geom_treemap_subgroup_border(colour = "#F5F5F5", size = 2)
gg <- gg + geom_treemap_subgroup_text(alpha = 0.6, colour = "black")
# scale_fill_gradientn() 将颜色比例转换为概率转换颜色分布, 同时可以根据 limits, breaks, labels 设定连续型刻度的值
gg <- gg + scale_fill_gradientn(colours = c("#98FB98", "#FF4500", "#191970"), limits=c(0, 3), breaks = c(0, 1, 2, 3), labels = c(0, 1, 2, 3))
# guides() 设置图例信息
gg <- gg + guides(fill = guide_legend(title.position = "top", label.position = "bottom"))
# labs() 对图形添加注释和标签(包含标题 title、子标题 subtitle、坐标轴 x & y 和引用 caption 等注释)
gg <- gg + labs(title = expression(paste("国际足球联合会·FIFA"^"®", " 世界杯™ 收视率 2010")),x = NULL,y = NULL,fill = '收视率', caption = "资料来源: FiveThirtyEight.com - graph by 数绘小站 - 2022-10-19")
# theme() 实现对非数据元素的调整, 对结果进行进一步渲染, 使之更加美观
gg <- gg + theme(# plot.title 主标题plot.title = element_text(size = 20, face = "bold", family = 'nshk'),# plot.caption 说明文字plot.caption = element_text(hjust = 0.85, vjust = 0, size = 10, family = 'zxw'),# legend.position 设置图例位置, 这里用坐标来指定图例具体的摆放位置legend.position = c(0.15, 0.18),# legend.direction 设置图例的方向, horizontal 表示水平方向摆放legend.direction = 'horizontal',# legend.background 设置图例的背景, 且图例边框无legend.background = element_rect(fill='#EEE8AA', colour = 'transparent'),# legend.title 设置图例标题legend.title = element_text(family = 'zxw', hjust = 0.5),# text 设置文本格式text = element_text(family = 'albert'))
7. 保存图片到 PDF 和 PNG
gg
filename = '20180612-A-01'
ggsave(filename = paste0(filename, ".pdf"), width = 9.2, height = 6.5, device = cairo_pdf)
ggsave(filename = paste0(filename, ".png"), width = 9.2, height = 6.5, dpi = 100, device = "png", bg = 'white')
8. session-info
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] showtext_0.9-5 showtextdb_3.0 sysfonts_0.8.8 treemapify_2.5.5
## [5] forcats_0.5.2 stringr_1.4.1 dplyr_1.0.10 purrr_0.3.4
## [9] readr_2.1.2 tidyr_1.2.1 tibble_3.1.8 ggplot2_3.3.6
## [13] tidyverse_1.3.2
##
## loaded via a namespace (and not attached):
## [1] lubridate_1.8.0 assertthat_0.2.1 digest_0.6.29
## [4] utf8_1.2.2 R6_2.5.1 cellranger_1.1.0
## [7] backports_1.4.1 reprex_2.0.2 evaluate_0.16
## [10] highr_0.9 httr_1.4.4 pillar_1.8.1
## [13] rlang_1.0.6 curl_4.3.3 googlesheets4_1.0.1
## [16] readxl_1.4.1 rstudioapi_0.14 jquerylib_0.1.4
## [19] rmarkdown_2.16 textshaping_0.3.6 googledrive_2.0.0
## [22] bit_4.0.4 munsell_0.5.0 broom_1.0.1
## [25] compiler_4.2.1 modelr_0.1.9 xfun_0.32
## [28] systemfonts_1.0.4 pkgconfig_2.0.3 htmltools_0.5.3
## [31] ggfittext_0.9.1 tidyselect_1.1.2 fansi_1.0.3
## [34] crayon_1.5.2 tzdb_0.3.0 dbplyr_2.2.1
## [37] withr_2.5.0 grid_4.2.1 jsonlite_1.8.2
## [40] gtable_0.3.1 lifecycle_1.0.3 DBI_1.1.3
## [43] magrittr_2.0.3 scales_1.2.1 vroom_1.5.7
## [46] cli_3.4.1 stringi_1.7.8 cachem_1.0.6
## [49] farver_2.1.1 fs_1.5.2 xml2_1.3.3
## [52] bslib_0.4.0 ragg_1.2.3 ellipsis_0.3.2
## [55] generics_0.1.3 vctrs_0.4.2 tools_4.2.1
## [58] bit64_4.0.5 glue_1.6.2 hms_1.1.2
## [61] parallel_4.2.1 fastmap_1.1.0 yaml_2.3.5
## [64] colorspace_2.0-3 gargle_1.2.1 rvest_1.0.3
## [67] knitr_1.40 haven_2.5.1 sass_0.4.2
测试数据
配套数据下载:FIFA World Cup Audience
这篇关于20180612-A · FIFA World Cup Audience · ggplot2 geom_treemap 矩形树状图 treemapify 画图 图例 · R 语言数据可视化 案例 源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!