【轴承RUL预测代码】基于DRSN(深度残差收缩网络)

2023-11-22 14:59

本文主要是介绍【轴承RUL预测代码】基于DRSN(深度残差收缩网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DRSN(深度残差收缩网络)和完整Transformer(encoder+decoder)

  • DRSN(深度残差收缩网络)
    • 模型的代码
    • 模型的打印
    • 训练与预测
      • 训练集的可视化:
      • 测试集的可视化:
    • DRSN-TCN的效果

DRSN(深度残差收缩网络)

此次模型是应一位网友提出,怎么将其应用到我们的RUL预测领域中。当时候提出需求的时候,我也不太懂,后面花了两三天写出来了基础代码(就是模型个部分结构基本是固定),后续有花了2天时间修改出来了。比如构建DRSN的Block结构,DRSN与TCN的结合等等。下面参照一些博客大佬写的内容1234

模型的代码


class DRSN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(DRSN, self).__init__()self.resnet1 = ResNetBlock(input_size, hidden_size)self.resnet2 = ResNetBlock(hidden_size, hidden_size)self.resnet3 = ResNetBlock(hidden_size, hidden_size)self.soft_threshold = SoftThreshold(hidden_size)self.attention = Attention(hidden_size)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x):x = self.resnet1(x)x = self.resnet2(x)x = self.resnet3(x)x = self.soft_threshold(x)x = self.attention(x)x = self.linear(x)return xclass ResNetBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResNetBlock, self).__init__()self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1)self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm1d(out_channels)self.bn2 = nn.BatchNorm1d(out_channels)self.relu = nn.ReLU()def forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x += identityx = self.relu(x)return xclass SoftThreshold(nn.Module):def __init__(self, num_features):super(SoftThreshold, self).__init__()# 初始化阈值学习参数self.thresholds = nn.Parameter(torch.zeros(num_features))def forward(self, x):x = torch.sign(x) * torch.max(torch.abs(x) - self.thresholds, torch.zeros_like(x))return xclass Attention(nn.Module):def __init__(self, hidden_size):super(Attention, self).__init__()self.linear = nn.Linear(hidden_size, 1)def forward(self, x):# 计算注意力权重weights = self.linear(x)weights = torch.softmax(weights, dim=1)# 添加注意力权重x = x * weightsreturn x

模型的打印

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
DRSN                                     [128, 1]                  --
├─ResNetBlock: 1-1                       [128, 128, 16]            --
│    └─Conv1d: 2-1                       [128, 128, 16]            25,472
│    └─BatchNorm1d: 2-2                  [128, 128, 16]            256
│    └─ReLU: 2-3                         [128, 128, 16]            --
│    └─Conv1d: 2-4                       [128, 128, 16]            49,280
│    └─BatchNorm1d: 2-5                  [128, 128, 16]            256
│    └─Conv1d: 2-6                       [128, 128, 16]            8,576
│    └─LeakyReLU: 2-7                    [128, 128, 16]            --
├─ResNetBlock: 1-2                       [128, 32, 16]             --
│    └─Conv1d: 2-8                       [128, 32, 16]             12,320
│    └─BatchNorm1d: 2-9                  [128, 32, 16]             64
│    └─ReLU: 2-10                        [128, 32, 16]             --
│    └─Conv1d: 2-11                      [128, 32, 16]             3,104
│    └─BatchNorm1d: 2-12                 [128, 32, 16]             64
│    └─Conv1d: 2-13                      [128, 32, 16]             4,128
│    └─LeakyReLU: 2-14                   [128, 32, 16]             --
├─ResNetBlock: 1-3                       [128, 16, 16]             --
│    └─Conv1d: 2-15                      [128, 16, 16]             1,552
│    └─BatchNorm1d: 2-16                 [128, 16, 16]             32
│    └─ReLU: 2-17                        [128, 16, 16]             --
│    └─Conv1d: 2-18                      [128, 16, 16]             784
│    └─BatchNorm1d: 2-19                 [128, 16, 16]             32
│    └─Conv1d: 2-20                      [128, 16, 16]             528
│    └─LeakyReLU: 2-21                   [128, 16, 16]             --
├─SoftThreshold: 1-4                     [128, 16, 16]             16
├─Attention: 1-5                         [128, 16, 16]             --
│    └─Linear: 2-22                      [128, 16, 1]              17
├─Linear: 1-6                            [128, 1]                  17
├─Sigmoid: 1-7                           [128, 1]                  --
==========================================================================================
Total params: 106,498
Trainable params: 106,498
Non-trainable params: 0
Total mult-adds (M): 216.66
==========================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 14.70
Params size (MB): 0.43
Estimated Total Size (MB): 15.66
==========================================================================================

最后还有与TCN的结合

===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
DRSN                                          [128, 1]                  --
├─TemporalConvNet: 1-1                        [128, 32, 16]             --
│    └─Sequential: 2-1                        [128, 32, 16]             --
│    │    └─TemporalBlock: 3-1                [128, 64, 16]             33,984
│    │    └─TemporalBlock: 3-2                [128, 32, 16]             13,920
│    │    └─TemporalBlock: 3-3                [128, 32, 16]             9,280
├─SoftThreshold: 1-2                          [128, 16, 32]             32
├─Attention: 1-3                              [128, 16, 32]             --
│    └─Linear: 2-2                            [128, 16, 1]              33
├─Linear: 1-4                                 [128, 1]                  33
├─Sigmoid: 1-5                                [128, 1]                  --
===============================================================================================
Total params: 57,282
Trainable params: 57,282
Non-trainable params: 0
Total mult-adds (M): 114.99
===============================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 12.60
Params size (MB): 0.23
Estimated Total Size (MB): 13.37
===============================================================================================

训练与预测

这还是以PHM2012轴承的工况一的七个轴承为例,Bearing1-1和Beanring1-2做训练,后面Bearing1-3到Bearing15这五个做预测.,使用的特征还是之前的示例数据EMD分解后的IMF分量的6个统计特征。

训练集的可视化:

Bearing1-1
请添加图片描述

测试集的可视化:

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

DRSN-TCN的效果

训练集可视化:
请添加图片描述

请添加图片描述
请添加图片描述
洽谈轴承效果还是比较差,这里就不放图了。总体来说,还是需要对DRSN与TCN的结合进行优化。


  1. 深度残差收缩网络(DRSN ↩︎

  2. 深度残差收缩网络:一种面向强噪声数据的深度学习方法 ↩︎

  3. 残差网络?收缩?深度残差收缩网络看这篇就够了 ↩︎

  4. 另类注意力机制之深度残差收缩网络(附代码) ↩︎

这篇关于【轴承RUL预测代码】基于DRSN(深度残差收缩网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410959

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.