【轴承RUL预测代码】基于DRSN(深度残差收缩网络)

2023-11-22 14:59

本文主要是介绍【轴承RUL预测代码】基于DRSN(深度残差收缩网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DRSN(深度残差收缩网络)和完整Transformer(encoder+decoder)

  • DRSN(深度残差收缩网络)
    • 模型的代码
    • 模型的打印
    • 训练与预测
      • 训练集的可视化:
      • 测试集的可视化:
    • DRSN-TCN的效果

DRSN(深度残差收缩网络)

此次模型是应一位网友提出,怎么将其应用到我们的RUL预测领域中。当时候提出需求的时候,我也不太懂,后面花了两三天写出来了基础代码(就是模型个部分结构基本是固定),后续有花了2天时间修改出来了。比如构建DRSN的Block结构,DRSN与TCN的结合等等。下面参照一些博客大佬写的内容1234

模型的代码


class DRSN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(DRSN, self).__init__()self.resnet1 = ResNetBlock(input_size, hidden_size)self.resnet2 = ResNetBlock(hidden_size, hidden_size)self.resnet3 = ResNetBlock(hidden_size, hidden_size)self.soft_threshold = SoftThreshold(hidden_size)self.attention = Attention(hidden_size)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x):x = self.resnet1(x)x = self.resnet2(x)x = self.resnet3(x)x = self.soft_threshold(x)x = self.attention(x)x = self.linear(x)return xclass ResNetBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResNetBlock, self).__init__()self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1)self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm1d(out_channels)self.bn2 = nn.BatchNorm1d(out_channels)self.relu = nn.ReLU()def forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x += identityx = self.relu(x)return xclass SoftThreshold(nn.Module):def __init__(self, num_features):super(SoftThreshold, self).__init__()# 初始化阈值学习参数self.thresholds = nn.Parameter(torch.zeros(num_features))def forward(self, x):x = torch.sign(x) * torch.max(torch.abs(x) - self.thresholds, torch.zeros_like(x))return xclass Attention(nn.Module):def __init__(self, hidden_size):super(Attention, self).__init__()self.linear = nn.Linear(hidden_size, 1)def forward(self, x):# 计算注意力权重weights = self.linear(x)weights = torch.softmax(weights, dim=1)# 添加注意力权重x = x * weightsreturn x

模型的打印

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
DRSN                                     [128, 1]                  --
├─ResNetBlock: 1-1                       [128, 128, 16]            --
│    └─Conv1d: 2-1                       [128, 128, 16]            25,472
│    └─BatchNorm1d: 2-2                  [128, 128, 16]            256
│    └─ReLU: 2-3                         [128, 128, 16]            --
│    └─Conv1d: 2-4                       [128, 128, 16]            49,280
│    └─BatchNorm1d: 2-5                  [128, 128, 16]            256
│    └─Conv1d: 2-6                       [128, 128, 16]            8,576
│    └─LeakyReLU: 2-7                    [128, 128, 16]            --
├─ResNetBlock: 1-2                       [128, 32, 16]             --
│    └─Conv1d: 2-8                       [128, 32, 16]             12,320
│    └─BatchNorm1d: 2-9                  [128, 32, 16]             64
│    └─ReLU: 2-10                        [128, 32, 16]             --
│    └─Conv1d: 2-11                      [128, 32, 16]             3,104
│    └─BatchNorm1d: 2-12                 [128, 32, 16]             64
│    └─Conv1d: 2-13                      [128, 32, 16]             4,128
│    └─LeakyReLU: 2-14                   [128, 32, 16]             --
├─ResNetBlock: 1-3                       [128, 16, 16]             --
│    └─Conv1d: 2-15                      [128, 16, 16]             1,552
│    └─BatchNorm1d: 2-16                 [128, 16, 16]             32
│    └─ReLU: 2-17                        [128, 16, 16]             --
│    └─Conv1d: 2-18                      [128, 16, 16]             784
│    └─BatchNorm1d: 2-19                 [128, 16, 16]             32
│    └─Conv1d: 2-20                      [128, 16, 16]             528
│    └─LeakyReLU: 2-21                   [128, 16, 16]             --
├─SoftThreshold: 1-4                     [128, 16, 16]             16
├─Attention: 1-5                         [128, 16, 16]             --
│    └─Linear: 2-22                      [128, 16, 1]              17
├─Linear: 1-6                            [128, 1]                  17
├─Sigmoid: 1-7                           [128, 1]                  --
==========================================================================================
Total params: 106,498
Trainable params: 106,498
Non-trainable params: 0
Total mult-adds (M): 216.66
==========================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 14.70
Params size (MB): 0.43
Estimated Total Size (MB): 15.66
==========================================================================================

最后还有与TCN的结合

===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
DRSN                                          [128, 1]                  --
├─TemporalConvNet: 1-1                        [128, 32, 16]             --
│    └─Sequential: 2-1                        [128, 32, 16]             --
│    │    └─TemporalBlock: 3-1                [128, 64, 16]             33,984
│    │    └─TemporalBlock: 3-2                [128, 32, 16]             13,920
│    │    └─TemporalBlock: 3-3                [128, 32, 16]             9,280
├─SoftThreshold: 1-2                          [128, 16, 32]             32
├─Attention: 1-3                              [128, 16, 32]             --
│    └─Linear: 2-2                            [128, 16, 1]              33
├─Linear: 1-4                                 [128, 1]                  33
├─Sigmoid: 1-5                                [128, 1]                  --
===============================================================================================
Total params: 57,282
Trainable params: 57,282
Non-trainable params: 0
Total mult-adds (M): 114.99
===============================================================================================
Input size (MB): 0.54
Forward/backward pass size (MB): 12.60
Params size (MB): 0.23
Estimated Total Size (MB): 13.37
===============================================================================================

训练与预测

这还是以PHM2012轴承的工况一的七个轴承为例,Bearing1-1和Beanring1-2做训练,后面Bearing1-3到Bearing15这五个做预测.,使用的特征还是之前的示例数据EMD分解后的IMF分量的6个统计特征。

训练集的可视化:

Bearing1-1
请添加图片描述

测试集的可视化:

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

DRSN-TCN的效果

训练集可视化:
请添加图片描述

请添加图片描述
请添加图片描述
洽谈轴承效果还是比较差,这里就不放图了。总体来说,还是需要对DRSN与TCN的结合进行优化。


  1. 深度残差收缩网络(DRSN ↩︎

  2. 深度残差收缩网络:一种面向强噪声数据的深度学习方法 ↩︎

  3. 残差网络?收缩?深度残差收缩网络看这篇就够了 ↩︎

  4. 另类注意力机制之深度残差收缩网络(附代码) ↩︎

这篇关于【轴承RUL预测代码】基于DRSN(深度残差收缩网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410959

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类