Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点

2023-11-22 14:50

本文主要是介绍Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RGA的原理

区域生长算法的基本思想是将有相似性质的像素点合并到一起。对每一个区域要先指定一个种子点作为生长的起点,然后将种子点周围领域的像素点和种子点进行对比,将具有相似性质的点合并起来继续向外生长,直到没有满足条件的像素被包括进来为止。这样一个区域的生长就完成了。

  • 实现该算法的一个关键问题是给定种子点(种子点如何选取?)

    可以手动输入坐标作为种子点。也可根据自己划分的阈值自动生成种子。当然我感觉最好还是使用人工交互选取种子点。

算法步骤 :

a> 创建一个空白的图像(全黑);

b> 将种子点存入vector中,vector中存储待生长的种子点;

c> 依次弹出种子点并判断种子点如周围8邻域的关系(生长规则),相似的点则作为下次生长的种子点;

d> vector中不存在种子点后就停止生长。

使用人工交互的方法获取种子点(鼠标点击)

import matplotlib.pyplot as plt
from  PIL import Imagedef get_x_y(path,n): #path表示图片路径,n表示要获取的坐标个数im = Image.open(path)plt.imshow(im, cmap = plt.get_cmap("gray"))pos=plt.ginput(n)return pos   #得到的pos是列表中包含多个坐标元组

区域生长算法


#区域生长
def regionGrow(gray, seeds, thresh, p):  #thresh表示与领域的相似距离,小于该距离就合并seedMark = np.zeros(gray.shape)#八邻域if p == 8:connection = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)]#四邻域elif p == 4:connection = [(-1, 0), (0, 1), (1, 0), (0, -1)]#seeds内无元素时候生长停止while len(seeds) != 0:#栈顶元素出栈pt = seeds.pop(0)for i in range(p):tmpX = int(pt[0] + connection[i][0])tmpY = int(pt[1] + connection[i][1])#检测边界点if tmpX < 0 or tmpY < 0 or tmpX >= gray.shape[0] or tmpY >= gray.shape[1]:continueif abs(int(gray[tmpX, tmpY]) - int(gray[pt])) < thresh and seedMark[tmpX, tmpY] == 0:seedMark[tmpX, tmpY] = 255seeds.append((tmpX, tmpY))return seedMark

测试


path = r"H:\Dataset\water_leakage\qietu\train\img\34_01.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# hist = cv2.calcHist([gray], [0], None, [256], [0,256])#直方图# seeds = originalSeed(gray, th=10)
# print(seeds)
seeds=get_x_y(path=path,n=3) #获取初始种子
print("选取的初始点为:")
new_seeds=[]
for seed in seeds:print(seed)#下面是需要注意的一点#第一: 用鼠标选取的坐标为float类型,需要转为int型#第二:用鼠标选取的坐标为(W,H),而我们使用函数读取到的图片是(行,列),而这对应到原图是(H,W),所以这里需要调换一下坐标位置,这是很多人容易忽略的一点new_seeds.append((int(seed[1]), int(seed[0])))#result= regionGrow(gray, new_seeds, thresh=3, p=8)#plt.plot(hist)
#plt.xlim([0, 256])
#plt.show()result=Image.fromarray(result.astype(np.uint8))
result.show()

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

整合上面的函数,用于一个文件的所有图片

def RGA(img_path,save_path,n):imgs_path = os.listdir(img_path)for r in imgs_path:img=os.path.join(img_path,r)seeds = get_x_y(path=img, n=n)print("选取的初始点为:")new_seeds=[]for seed in seeds:print(seed)new_seeds.append((int(seed[1]), int(seed[0])))img = cv2.imread(img)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)result = regionGrow(gray, new_seeds, thresh=3, p=8)result = Image.fromarray(result.astype(np.uint8))result.show()result.save(save_path+r)img_path=r'H:\Dataset\water_leakage\qietu\val\img'
save_path=r'H:\Dataset\water_leakage\qietu\val\RAG'
RGA(img_path,save_path,3)

网上流行的另一个python版本的区域生长算法,将其改为人工交互模式

这个版本和上那个版本是区别是第一个版本在regionGrow函数中坐标是放在元组中。
而这个版本的坐标放在point函数中,相当于放到一个个的节点中吧

import osimport numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as pltdef get_x_y(path,n): #path表示图片路径,n表示要获取的坐标个数im = Image.open(path)plt.imshow(im, cmap = plt.get_cmap("gray"))pos=plt.ginput(n)return posclass Point(object):def __init__(self, x, y):self.x = xself.y = ydef getX(self):return self.xdef getY(self):return self.ydef getGrayDiff(img, currentPoint, tmpPoint):return abs(int(img[currentPoint.x, currentPoint.y]) - int(img[tmpPoint.x, tmpPoint.y]))def selectConnects(p):if p != 0:connects = [Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0), Point(1, 1), Point(0, 1), Point(-1, 1),Point(-1, 0)]else:connects = [Point(0, -1), Point(1, 0), Point(0, 1), Point(-1, 0)]return connectsdef regionGrow(img, seeds, thresh, p=1):height, weight = img.shapeseedMark = np.zeros(img.shape)seedList = []for seed in seeds:seedList.append(seed)label = 255connects = selectConnects(p)while (len(seedList) > 0):currentPoint = seedList.pop(0)seedMark[currentPoint.x, currentPoint.y] = labelfor i in range(8):tmpX = currentPoint.x + connects[i].xtmpY = currentPoint.y + connects[i].yif tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= weight:continuegrayDiff = getGrayDiff(img, currentPoint, Point(tmpX, tmpY))if grayDiff < thresh and seedMark[tmpX, tmpY] == 0:seedMark[tmpX, tmpY] = labelseedList.append(Point(tmpX, tmpY))return seedMarkdef RGA(img_path,savepath,n):imgs_path = os.listdir(img_path)for r in imgs_path:img=os.path.join(img_path,r)seeds = get_x_y(path=img, n=n)print("选取的初始点为:")seeds_point = []for seed in seeds:print(seed)seeds_point.append(Point(int(seed[1]),int(seed[0])))img = cv2.imread(img)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)seedMark = regionGrow(gray, seeds_point, thresh=3, p=8)seedMark = Image.fromarray(seedMark.astype(np.uint8))seedMark.show()seedMark.save(os.path.join(savepath,r))img_path=r'H:\Dataset\water_leakage\qietu\val\img'
save_path=r'H:\Dataset\water_leakage\qietu\val\RAG'
RGA(img_path,save_path,3)

这篇关于Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410914

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推