Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点

2023-11-22 14:50

本文主要是介绍Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RGA的原理

区域生长算法的基本思想是将有相似性质的像素点合并到一起。对每一个区域要先指定一个种子点作为生长的起点,然后将种子点周围领域的像素点和种子点进行对比,将具有相似性质的点合并起来继续向外生长,直到没有满足条件的像素被包括进来为止。这样一个区域的生长就完成了。

  • 实现该算法的一个关键问题是给定种子点(种子点如何选取?)

    可以手动输入坐标作为种子点。也可根据自己划分的阈值自动生成种子。当然我感觉最好还是使用人工交互选取种子点。

算法步骤 :

a> 创建一个空白的图像(全黑);

b> 将种子点存入vector中,vector中存储待生长的种子点;

c> 依次弹出种子点并判断种子点如周围8邻域的关系(生长规则),相似的点则作为下次生长的种子点;

d> vector中不存在种子点后就停止生长。

使用人工交互的方法获取种子点(鼠标点击)

import matplotlib.pyplot as plt
from  PIL import Imagedef get_x_y(path,n): #path表示图片路径,n表示要获取的坐标个数im = Image.open(path)plt.imshow(im, cmap = plt.get_cmap("gray"))pos=plt.ginput(n)return pos   #得到的pos是列表中包含多个坐标元组

区域生长算法


#区域生长
def regionGrow(gray, seeds, thresh, p):  #thresh表示与领域的相似距离,小于该距离就合并seedMark = np.zeros(gray.shape)#八邻域if p == 8:connection = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)]#四邻域elif p == 4:connection = [(-1, 0), (0, 1), (1, 0), (0, -1)]#seeds内无元素时候生长停止while len(seeds) != 0:#栈顶元素出栈pt = seeds.pop(0)for i in range(p):tmpX = int(pt[0] + connection[i][0])tmpY = int(pt[1] + connection[i][1])#检测边界点if tmpX < 0 or tmpY < 0 or tmpX >= gray.shape[0] or tmpY >= gray.shape[1]:continueif abs(int(gray[tmpX, tmpY]) - int(gray[pt])) < thresh and seedMark[tmpX, tmpY] == 0:seedMark[tmpX, tmpY] = 255seeds.append((tmpX, tmpY))return seedMark

测试


path = r"H:\Dataset\water_leakage\qietu\train\img\34_01.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# hist = cv2.calcHist([gray], [0], None, [256], [0,256])#直方图# seeds = originalSeed(gray, th=10)
# print(seeds)
seeds=get_x_y(path=path,n=3) #获取初始种子
print("选取的初始点为:")
new_seeds=[]
for seed in seeds:print(seed)#下面是需要注意的一点#第一: 用鼠标选取的坐标为float类型,需要转为int型#第二:用鼠标选取的坐标为(W,H),而我们使用函数读取到的图片是(行,列),而这对应到原图是(H,W),所以这里需要调换一下坐标位置,这是很多人容易忽略的一点new_seeds.append((int(seed[1]), int(seed[0])))#result= regionGrow(gray, new_seeds, thresh=3, p=8)#plt.plot(hist)
#plt.xlim([0, 256])
#plt.show()result=Image.fromarray(result.astype(np.uint8))
result.show()

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

整合上面的函数,用于一个文件的所有图片

def RGA(img_path,save_path,n):imgs_path = os.listdir(img_path)for r in imgs_path:img=os.path.join(img_path,r)seeds = get_x_y(path=img, n=n)print("选取的初始点为:")new_seeds=[]for seed in seeds:print(seed)new_seeds.append((int(seed[1]), int(seed[0])))img = cv2.imread(img)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)result = regionGrow(gray, new_seeds, thresh=3, p=8)result = Image.fromarray(result.astype(np.uint8))result.show()result.save(save_path+r)img_path=r'H:\Dataset\water_leakage\qietu\val\img'
save_path=r'H:\Dataset\water_leakage\qietu\val\RAG'
RGA(img_path,save_path,3)

网上流行的另一个python版本的区域生长算法,将其改为人工交互模式

这个版本和上那个版本是区别是第一个版本在regionGrow函数中坐标是放在元组中。
而这个版本的坐标放在point函数中,相当于放到一个个的节点中吧

import osimport numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as pltdef get_x_y(path,n): #path表示图片路径,n表示要获取的坐标个数im = Image.open(path)plt.imshow(im, cmap = plt.get_cmap("gray"))pos=plt.ginput(n)return posclass Point(object):def __init__(self, x, y):self.x = xself.y = ydef getX(self):return self.xdef getY(self):return self.ydef getGrayDiff(img, currentPoint, tmpPoint):return abs(int(img[currentPoint.x, currentPoint.y]) - int(img[tmpPoint.x, tmpPoint.y]))def selectConnects(p):if p != 0:connects = [Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0), Point(1, 1), Point(0, 1), Point(-1, 1),Point(-1, 0)]else:connects = [Point(0, -1), Point(1, 0), Point(0, 1), Point(-1, 0)]return connectsdef regionGrow(img, seeds, thresh, p=1):height, weight = img.shapeseedMark = np.zeros(img.shape)seedList = []for seed in seeds:seedList.append(seed)label = 255connects = selectConnects(p)while (len(seedList) > 0):currentPoint = seedList.pop(0)seedMark[currentPoint.x, currentPoint.y] = labelfor i in range(8):tmpX = currentPoint.x + connects[i].xtmpY = currentPoint.y + connects[i].yif tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= weight:continuegrayDiff = getGrayDiff(img, currentPoint, Point(tmpX, tmpY))if grayDiff < thresh and seedMark[tmpX, tmpY] == 0:seedMark[tmpX, tmpY] = labelseedList.append(Point(tmpX, tmpY))return seedMarkdef RGA(img_path,savepath,n):imgs_path = os.listdir(img_path)for r in imgs_path:img=os.path.join(img_path,r)seeds = get_x_y(path=img, n=n)print("选取的初始点为:")seeds_point = []for seed in seeds:print(seed)seeds_point.append(Point(int(seed[1]),int(seed[0])))img = cv2.imread(img)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)seedMark = regionGrow(gray, seeds_point, thresh=3, p=8)seedMark = Image.fromarray(seedMark.astype(np.uint8))seedMark.show()seedMark.save(os.path.join(savepath,r))img_path=r'H:\Dataset\water_leakage\qietu\val\img'
save_path=r'H:\Dataset\water_leakage\qietu\val\RAG'
RGA(img_path,save_path,3)

这篇关于Python实现区域生长算法(RGA),并且使用鼠标选取初始坐标点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410914

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一