2020年泰迪杯C题智慧政务中的文本数据挖掘应用--含全部源码

本文主要是介绍2020年泰迪杯C题智慧政务中的文本数据挖掘应用--含全部源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.摘要

本文是针对智慧政务中的文本数据挖掘应用的研究。通过建立基于三层网络结构的fastText文本分类模型,聚类量化模型,熵权评估模型解决了群众留言分类,热点问题挖掘,答复意见评价等问题。
针对群众留言分类问题,本文利用所给数据进行词频统计和词云图分析。得到所给训练集是一种不平衡数据集,我们对已有的数据集进行采样,从而扩充训练集,解决数据不平衡问题。为了方便应用分类模型,我们对文本数据进行正则预处理,去停用词,jieba智能分词来获取特征文本。分词部分,我们利用逆向最大匹配分词算法BMM和jieba分词实现了更好的分词效果。对于分类模型的建立,我们考虑基于TFIDF关键词抽取和最大相似度匹配的无监督分类模型,最终在验证集上的F1得分为0.56。为了得到更加精准的分类模型,利用表征学习进行文本词嵌入,结合fastText文本分类模型实现了有监督聚类,最终的验证集F1评分为0.93。该模型的分类效果较好,基本满足分类需求。
针对热点问题挖掘,本文通过建立k-means聚类量化模型实现了问题热度指数的量化。首先量化留言关注度,将一条留言所有的点赞数和反对数相加作为一个留言关注度量化评分。我们考虑从留言具体内容的角度来研究留言热度。我们利用词频共现算法来获取关键词指数,然后利用文本相关系数构建k-means聚类量化模型,文本热度指数可以根据留言到中心簇的距离公式来量化。综合考虑点赞数与反对数指标,从而加权归一化得到整体的留言热度指数。最终根据留言热度指数量化结果排序,获取了排名前五的热点问题。进一步利用聚类算法对热点问题进行归类,得到的最终热点问题结果表见正文表3。其中前五的热点问题中有三条是关于A市58车贷案,这也说明该问题引起了广泛关注。
针对答复意见的评价问题,本文通过量化相关性,完整性,可解释性来综合量化留言质量。对于相关性,我们利用莱文斯坦相似度计算留言和答复的文本相似性来量化。对于答复意见的完整性指标量化,我们考虑利用文本分词算法,通过文本分词数来衡量。可解释性指标,我们利用字符串匹配结合高频词统计来获取。根据量化的三个指标,我们建立了熵权综合评估模型,利用python编程,最终给出了每个答复的熵权评分作为答复意见质量评分。最终给出了排名前10的留言答复意见结果表,具体见正文表4。

2.思路分析

2.1问题一的分析

本题要求针对文本留言内容建立一个一级标签分类模型。从而实现群众留言的自动化分类。我们首先针对附件二多给的文本数据进行定性的分析,包括文本词频统计,词云图绘制等。
为了能够较好的应用分类模型,我们首先针对文本数据进行特征预处理,利用正则替换,jieba分词,去除停止词等手段来清洗数据。进一步利用清洗之后的特征数据进行分类建模。对于分词部分,虽然利用了jieba智能分词模块,但仍旧有很多比较长的专业词很难完整的划分出来,因此我们利用逆向最大匹配分词算法BMM借助自建词表实现最佳分词。利用预处理之后的分类特征,我们首先尝试利用关键词提取以及关键词和标签词的最大相似度匹配来实现文本分类。关键词提取主要采用TFIDF算法来实现文本关键词抽取。
但是考虑到这种方法是一种无监督的分类算法,准确率可能比较低,因此我们考虑利用表征学习进行词嵌入,进一步利用开源Fasttext文本分类框架构建分类模型,从而实现有监督训练的文本分类。我们还提出了利用word2vec对文本进行表征学习,并且构建LGB最大提升树模型来实现文本分类的有监督训练。并且对比主流模型在测试集评分结果,从而得到较好的分类结果。

2.2问题二的分析

本题要求针对热点问题进行挖掘,主要目的是从群众留言中挖掘出热点问题。也就是给每一条留言都量化一个热度指数。并且根据热度指数进行排序,从而获取热度较高的评价问题。
对于热度指数的量化,我们通过对附件3数据可以发现问题的点赞数与反对数可以在一定程度上反应这个问题的关注度情况。因此问题的点赞数与反对数也是衡量问题热度的一个重要指标。比如问题的点赞数越多,就越说明这个问题反应人民群众的心声。进一步我们考虑从留言具体内容的角度来研究留言热度。首先对文本数据进行预处理,同样包括正则字符处理,jieba分词,然后针对预处理之后留言文本进行词频统计分析。进一步根据词频共现算法来获取关键词指数。根据关键词指数量化文本之间的相关关系,然后根据文本相关系数进行聚类。从而将距离聚类中心簇较远的留言视为热点问题。
文本热度指数可以根据留言到中心簇的距离公式来量化,再综合考虑点赞数与反对数指标,从而加权归一化得到整体的留言热度指数。进一步排序获取最终的结果。

2.3问题三的分析

本题要求根据部门对于留言的答复意见给出一套意见的质量评价。我们尝试从各种角度来评估答复意见的质量,主要包括从相关性,完整性以及可解释性等角度。
对于答复意见的相关性质量,我们考虑利用文本相似度计算来衡量,通过利用前文的关键词抽取算法,抽取出留言的关键词文本和答复意见文本计算余弦相似度或者是莱文斯坦相似度。其中,莱文斯坦相似度描述的是两端文本之间的形体相似性。最终利用上述相似度计算结果归一化获取答复意见与问题的相关性系数。对于答复意见的完整性评价,我们利用前文的文本分词算法,通过文本词长度统计来衡量,一般来说文本含有的词语越多,回复意见越完整。此外对于答复意见的可解释性评估,主要考虑利用字符串匹配来获取,主要是统计答复意见中高频词出现在问题中高频词的次数进行统计。最终量化出三个评价指标,然后建立熵权综合评价模型,最终给出每个答复意见的质量评价得分。

3.解题过程

本题要求针对文本留言内容建立一个一级标签分类模型。从而实现群众留言的自动化分类。我们首先针对附件二给的文本数据进行定性的分析,包括文本词频统计,词云图绘制等。
对于文本标签的分类,我们结合无监督相似性识别和有监督聚类来实现最终的多分类模型构建,从而训练一个更加准确的分类器。
根据上述分析,我们给出了问题一解题思路流程图如下:

在这里插入图片描述
在这里插入图片描述

图2 一级标签留言的占比情况

在这里插入图片描述

图3 附件二所有文本词云图
根据上述的词云图,我们也可以得到政府留言问题多数是关于城乡建设问题。而且学校,房屋,医院,工作等是群众问政留言记录中的高频词汇。这也从很大程度上说明老板姓真正关心的还是衣食住行等问题。
为了能够较好的应用分类模型,我们首先针对文本数据进行特征预处理,利用正则替换,jieba分词,去除停止词等手段来清洗数据。进一步利用清洗之后的特征数据进行分类建模。

在这里插入图片描述
图4 只使用jieba分词
在这里插入图片描述

图5 jieba分词结合BMM算法
根据上图对比,我们可以得到,只利用jieba分词,文本分的比较细。有一些长词很难准确的分出来。比如‘未管所’表示未成年管教所,只采用jieba分词的结果为未管,很难理解它是什么意思。而采用基于词典的BMM结合结巴分词之后的效过相对较好。很多长词都能够较好的分割出来。
我们利用预处理之后的文本再来研究文本分类,最终的目的是建立一个多标签的文本分类模型。

4.源码分享

附上2020年泰迪杯C题一等奖论文+源码,链接如下:

2020年泰迪杯C题全部源码

这篇关于2020年泰迪杯C题智慧政务中的文本数据挖掘应用--含全部源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410755

相关文章

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳