【brpc学习实践五】brpc自适应限流案例

2023-11-22 13:52

本文主要是介绍【brpc学习实践五】brpc自适应限流案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自适应限流

服务的处理能力是有客观上限的。当请求速度超过服务的处理速度时,服务就会过载。

如果服务持续过载,会导致越来越多的请求积压,最终所有的请求都必须等待较长时间才能被处理,从而使整个服务处于瘫痪状态。

与之相对的,如果直接拒绝掉一部分请求,反而能够让服务能够"及时"处理更多的请求。对应的方法就是设置最大并发。

自适应限流能动态调整服务的最大并发,在保证服务不过载的前提下,让服务尽可能多的处理请求。

使用场景

通常情况下要让服务不过载,只需在上线前进行压力测试,并通过little’s law计算出best_max_concurrency就可以了(并发度 = 时延 * QPS)。但在服务数量多,拓扑复杂,且处理能力会逐渐变化的局面下,使用固定的最大并发会带来巨大的测试工作量,很不方便。自适应限流就是为了解决这个问题。

使用自适应限流前建议做到:

客户端开启了重试功能。服务端有多个节点。

这样当一个节点返回过载时,客户端可以向其他的节点发起重试,从而尽量不丢失流量。

brpc开启自适应限流方法

目前只有method级别(即具体的rpc服务方法)支持自适应限流。如果要为某个method开启自适应限流,只需要将它的最大并发设置为"auto"即可。

// Set auto concurrency limiter for all methods
brpc::ServerOptions options;
options.method_max_concurrency = "auto";// Set auto concurrency limiter for specific method
server.MaxConcurrencyOf("example.EchoService.Echo") = "auto";

原理

名词及解释

  • concurrency(并发度): 同时处理的请求数,又被称为“并发度”。

  • max_concurrency:
    设置的最大并发度。超过并发的请求会被拒绝(返回ELIMIT错误),在集群层面,client应重试到另一台server上去

  • best_max_concurrency:
    并发的物理含义是任务处理槽位,天然存在上限,这个上限就是best_max_concurrency,也就是最佳的最大并发度,一般推荐设置最大并发为该值,若max_concurrency设置的过大,则concurrency可能大于best_max_concurrency,任务将无法被及时处理而暂存在各种队列中排队,系统也会进入拥塞状态。若max_concurrency设置的过小,则concurrency总是会小于best_max_concurrency,限制系统达到本可以达到的更高吞吐。

  • noload_latency:
    单纯处理任务的延时,不包括排队时间。另一种解释是低负载的延时。由于正确处理任务得经历必要的环节,其中会耗费cpu或等待下游返回,noload_latency是一个服务固有的属性,但可能随时间逐渐改变(由于内存碎片,压力变化,业务数据变化等因素)。

  • min_latency:
    实际测定的latency中的较小值的ema,当concurrency不大于best_max_concurrency时,min_latency和noload_latency接近(可能轻微上升)。

  • peak_qps: 服务处理qps的上限。注意是处理或回复的qps而不是接收的qps。值取决于best_max_concurrency /
    noload_latency,这两个量都是服务的固有属性,故peak_qps也是服务的固有属性,和拥塞状况无关,但可能随时间逐渐改变。

  • max_qps: 实际测定的qps中的较大值。由于qps具有上限,max_qps总是会小于peak_qps,不论拥塞与否。
    - Little’s Law

    在服务处于稳定状态时: concurrency = latency * qps。 这是自适应限流的理论基础。

当服务没有超载时,随着流量的上升,latency基本稳定(接近noload_latency),qps和concurrency呈线性关系一起上升。

当流量超过服务的peak_qps时,则concurrency和latency会一起上升,而qps会稳定在peak_qps。

假如一个服务的peak_qps和noload_latency都比较稳定,那么它的best_max_concurrency = noload_latency * peak_qps。

自适应限流就是要找到服务的noload_latency和peak_qps, 并将最大并发设置为靠近两者乘积的一个值。

自适应限流计算公式

自适应限流会不断的对请求进行采样,当采样窗口的样本数量足够时,会根据样本的平均延迟和服务当前的qps计算出下一个采样窗口的max_concurrency:

max_concurrency = max_qps * ((2+alpha) * min_latency - latency)
  • alpha为可接受的延时上升幅度,默认0.3。
  • latency是当前采样窗口内所有请求的平均latency。
  • max_qps是最近一段时间测量到的qps的极大值。
  • min_latency是最近一段时间测量到的latency较小值的ema,是noload_latency的估算值。

注意:当计算出来的 max_concurrency 和当前的 max_concurrency 的值不同时,每次对 max_concurrency 的调整的比例有一个上限,让 max_concurrency 的变化更为平滑。

当服务处于低负载时,min_latency约等于noload_latency,此时计算出来的max_concurrency会高于concurrency,但低于best_max_concurrency,给流量上涨留探索空间。而当服务过载时,服务的qps约等于max_qps,同时latency开始明显超过min_latency,此时max_concurrency则会接近concurrency,并通过定期衰减避免远离best_max_concurrency,保证服务不会过载。
估算noload_latency

服务的noload_latency并非是一成不变的,自适应限流必须能够正确的探测noload_latency的变化。当noload_latency下降时,是很容感知到的,因为这个时候latency也会下降。难点在于当latency上涨时,需要能够正确的辨别到底是服务过载了,还是noload_latency上涨了。

可能的方案有:

取最近一段时间的最小latency来近似noload_latency
取最近一段时间的latency的各种平均值来预测noload_latency
收集请求的平均排队等待时间,使用latency - queue_time作为noload_latency
每隔一段时间缩小max_concurrency,过一小段时间后以此时的latency作为noload_latency

方案1和方案2的问题在于:假如服务持续处于高负载,那么最近的所有latency都会高出noload_latency,从而使得算法估计的noload_latency不断升高。

方案3的问题在于,假如服务的性能瓶颈在下游服务,那么请求在服务本身的排队等待时间无法反应整体的负载情况。

方案4是最通用的,也经过了大量实验的考验。缩小max_concurrency和公式中的alpha存在关联。让我们做个假想实验,若latency极为稳定并都等于min_latency,那么公式简化为max_concurrency = max_qps * latency * (1 + alpha)。根据little’s law,qps最多为max_qps * (1 + alpha). alpha是qps的"探索空间",若alpha为0,则qps被锁定为max_qps,算法可能无法探索到peak_qps。但在qps已经达到peak_qps时,alpha会使延时上升(已拥塞),此时测定的min_latency会大于noload_latency,一轮轮下去最终会导致min_latency不收敛。定期降低max_concurrency就是阻止这个过程,并给min_latency下降提供"探索空间"。
减少重测时的流量损失

每隔一段时间,自适应限流算法都会缩小max_concurrency,并持续一段时间,然后将此时的latency作为服务的noload_latency,以处理noload_latency上涨了的情况。测量noload_latency时,必须让先服务处于低负载的状态,因此对max_concurrency的缩小是难以避免的。

由于max_concurrency < concurrency时,服务会拒绝掉所有的请求,限流算法将"排空所有的经历过排队等待的请求的时间" 设置为 latency * 2 ,以确保用于计算min_latency的样本绝大部分都是没有经过排队等待的。

由于服务的latency通常都不会太长,这种做法所带来的流量损失也很小。
应对抖动

即使服务自身没有过载,latency也会发生波动,根据Little’s Law,latency的波动会导致server的concurrency发生波动。

我们在设计自适应限流的计算公式时,考虑到了latency发生抖动的情况: 当latency与min_latency很接近时,根据计算公式会得到一个较高max_concurrency来适应concurrency的波动,从而尽可能的减少“误杀”。同时,随着latency的升高,max_concurrency会逐渐降低,以保护服务不会过载。

从另一个角度来说,当latency也开始升高时,通常意味着某处(不一定是服务本身,也有可能是下游服务)消耗了大量CPU资源,这个时候缩小max_concurrency也是合理的。
平滑处理

为了减少个别窗口的抖动对限流算法的影响,同时尽量降低计算开销,计算min_latency时会通过使用EMA来进行平滑处理:

if latency < min_latency:
min_latency = latency * ema_alpha + (1 - ema_alpha) * min_latency
else:
do_nothing

估算peak_qps
提高qps增长的速度

当服务启动时,由于服务本身需要进行一系列的初始化,tcp本身也有慢启动等一系列原因。服务在刚启动时的qps一定会很低。这就导致了服务启动时的max_concurrency也很低。而按照上面的计算公式,当max_concurrency很低的时候,预留给qps增长的冗余concurrency也很低(即:alpha * max_qps * min_latency)。从而会影响当流量增加时,服务max_concurrency的增加速度。

假如从启动到打满qps的时间过长,这期间会损失大量流量。在这里我们采取的措施有两个,

采样方面,一旦采到的请求数量足够多,直接提交当前采样窗口,而不是等待采样窗口的到时间了才提交
计算公式方面,当current_qps > 保存的max_qps时,直接进行更新,不进行平滑处理。

在进行了这两个处理之后,绝大部分情况下都能够在2秒左右将qps打满。
平滑处理

为了减少个别窗口的抖动对限流算法的影响,同时尽量降低计算开销,在计算max_qps时,会通过使用EMA来进行平滑处理:

if current_qps > max_qps:
max_qps = current_qps
else:
max_qps = current_qps * ema_alpha / 10 + (1 - ema_alpha / 10) * max_qps

将max_qps的ema参数置为min_latency的ema参数的十分之一的原因是: max_qps 下降了通常并不意味着极限qps也下降了。而min_latency下降了,通常意味着noload_latency确实下降了。
与netflix gradient算法的对比

netflix中的gradient算法公式为:max_concurrency = min_latency / latency * max_concurrency + queue_size。

其中latency是采样窗口的最小latency,min_latency是最近多个采样窗口的最小latency。min_latency / latency就是算法中的"梯度",当latency大于min_latency时,max_concurrency会逐渐减少;反之,max_concurrency会逐渐上升,从而让max_concurrency围绕在best_max_concurrency附近。

这个公式可以和本文的算法进行类比:
gradient算法中的latency和本算法的不同,前者的latency是最小值,后者是平均值。netflix的原意是最小值能更好地代表noload_latency,但实际上只要不对max_concurrency做定期衰减,不管最小值还是平均值都有可能不断上升使算法不收敛。最小值并不能带来额外的好处,反而会使算法更不稳定。
gradient算法中的max_concurrency / latency从概念上和qps有关联(根据little’s law),但可能严重脱节。比如在重测 min_latency前,若所有latency都小于min_latency,那么max_concurrency会不断下降甚至到0;但按照本算法,max_qps和min_latency仍然是稳定的,它们计算出的max_concurrency也不会剧烈变动。究其本质,gradient算法在迭代max_concurrency时,latency并不能代表实际并发为max_concurrency时的延时,两者是脱节的,所以max_concurrency / latency的实际物理含义不明,与qps可能差异甚大,最后导致了很大的偏差。
gradient算法的queue_size推荐为sqrt(max_concurrency),这是不合理的。netflix对queue_size的理解大概是代表各种不可控环节的缓存,比如socket里的,和max_concurrency存在一定的正向关系情有可原。但在我们的理解中,这部分queue_size作用微乎其微,没有或用常量即可。我们关注的queue_size是给concurrency上升留出的探索空间: max_concurrency的更新是有延迟的,在并发从低到高的增长过程中,queue_size的作用就是在max_concurrency更新前不限制qps上升。而当concurrency高时,服务可能已经过载了,queue_size就应该小一点,防止进一步恶化延时。这里的queue_size和并发是反向关系。

服务端代码实现

#include <gflags/gflags.h>
#include <butil/logging.h>
#include <brpc/server.h>
#include <butil/atomicops.h>
#include <butil/time.h>
#include <butil/logging.h>
#include <json2pb/json_to_pb.h>
#include <bthread/timer_thread.h>
#include <bthread/bthread.h>#include <cstdlib>
#include <fstream>
#include "cl_test.pb.h"DEFINE_int32(logoff_ms, 2000, "Maximum duration of server's LOGOFF state ""(waiting for client to close connection before server stops)");
DEFINE_int32(server_bthread_concurrency, 4, "Configuring the value of bthread_concurrency, For compute max qps, ");
DEFINE_int32(server_sync_sleep_us, 2500, "Usleep time, each request will be executed once, For compute max qps");
// max qps = 1000 / 2.5 * 4 DEFINE_int32(control_server_port, 9000, "");
DEFINE_int32(echo_port, 9001, "TCP Port of echo server");
DEFINE_int32(cntl_port, 9000, "TCP Port of controller server");
DEFINE_string(case_file, "", "File path for test_cases");
DEFINE_int32(latency_change_interval_us, 50000, "Intervalt for server side changes the latency");
DEFINE_int32(server_max_concurrency, 0, "Echo Server's max_concurrency");
DEFINE_bool(use_usleep, false, "EchoServer uses ::usleep or bthread_usleep to simulate latency ""when processing requests");bthread::TimerThread g_timer_thread;int cast_func(void* arg) {return *(int*)arg;
}void DisplayStage(const test::Stage& stage) {std::string type;switch(stage.type()) {case test::FLUCTUATE: type = "Fluctuate";break;case test::SMOOTH:type = "Smooth";break;default:type = "Unknown";}std::stringstream ss;ss << "Stage:[" << stage.lower_bound() << ':' << stage.upper_bound() <<  "]"<< " , Type:" << type;LOG(INFO) << ss.str();
}butil::atomic<int> cnt(0);
butil::atomic<int> atomic_sleep_time(0);
bvar::PassiveStatus<int> atomic_sleep_time_bvar(cast_func, &atomic_sleep_time);namespace bthread {
DECLARE_int32(bthread_concurrency);
}void TimerTask(void* data);class EchoServiceImpl : public test::EchoService {
public:EchoServiceImpl() : _stage_index(0), _running_case(false) {};virtual ~EchoServiceImpl() {};void SetTestCase(const test::TestCase& test_case) {_test_case = test_case;_next_stage_start = _test_case.latency_stage_list(0).duration_sec() + butil::gettimeofday_s();_stage_index = 0;_running_case = false;DisplayStage(_test_case.latency_stage_list(_stage_index));}void StartTestCase() {CHECK(!_running_case);_running_case = true;UpdateLatency();}void StopTestCase() {_running_case = false;}void UpdateLatency() {if (!_running_case) {return;}ComputeLatency();g_timer_thread.schedule(TimerTask, (void*)this, butil::microseconds_from_now(FLAGS_latency_change_interval_us));}virtual void Echo(google::protobuf::RpcController* cntl_base,const test::NotifyRequest* request,test::NotifyResponse* response,google::protobuf::Closure* done) {brpc::ClosureGuard done_guard(done); response->set_message("hello");::usleep(FLAGS_server_sync_sleep_us);if (FLAGS_use_usleep) {::usleep(_latency.load(butil::memory_order_relaxed));} else {bthread_usleep(_latency.load(butil::memory_order_relaxed));}}void ComputeLatency() {if (_stage_index < _test_case.latency_stage_list_size() &&butil::gettimeofday_s() > _next_stage_start) {++_stage_index;if (_stage_index < _test_case.latency_stage_list_size()) {_next_stage_start += _test_case.latency_stage_list(_stage_index).duration_sec();DisplayStage(_test_case.latency_stage_list(_stage_index));}}if (_stage_index == _test_case.latency_stage_list_size()) {const test::Stage& latency_stage = _test_case.latency_stage_list(_stage_index - 1);if (latency_stage.type() == test::ChangeType::FLUCTUATE) {_latency.store((latency_stage.lower_bound() + latency_stage.upper_bound()) / 2,butil::memory_order_relaxed);} else if (latency_stage.type() == test::ChangeType::SMOOTH) {_latency.store(latency_stage.upper_bound(), butil::memory_order_relaxed);}return;}const test::Stage& latency_stage = _test_case.latency_stage_list(_stage_index);const int lower_bound = latency_stage.lower_bound();const int upper_bound = latency_stage.upper_bound();if (latency_stage.type() == test::FLUCTUATE) {_latency.store(butil::fast_rand_less_than(upper_bound - lower_bound) + lower_bound,butil::memory_order_relaxed); } else if (latency_stage.type() == test::SMOOTH) {int latency = lower_bound + (upper_bound - lower_bound) / double(latency_stage.duration_sec()) * (latency_stage.duration_sec() - _next_stage_start + butil::gettimeofday_s());_latency.store(latency, butil::memory_order_relaxed);} else {LOG(FATAL) << "Wrong Type:" << latency_stage.type();}}private:int _stage_index;int _next_stage_start;butil::atomic<int> _latency;test::TestCase _test_case;bool _running_case;
};void TimerTask(void* data) {EchoServiceImpl* echo_service = (EchoServiceImpl*)data;echo_service->UpdateLatency();
}class ControlServiceImpl : public test::ControlService {
public:ControlServiceImpl() : _case_index(0) {LoadCaseSet(FLAGS_case_file);_echo_service = new EchoServiceImpl;if (_server.AddService(_echo_service,brpc::SERVER_OWNS_SERVICE) != 0) {LOG(FATAL) << "Fail to add service";}g_timer_thread.start(NULL);}virtual ~ControlServiceImpl() { _echo_service->StopTestCase();g_timer_thread.stop_and_join(); };virtual void Notify(google::protobuf::RpcController* cntl_base,const test::NotifyRequest* request,test::NotifyResponse* response,google::protobuf::Closure* done) {brpc::ClosureGuard done_guard(done);const std::string& message = request->message();LOG(INFO) << message;if (message == "ResetCaseSet") {_server.Stop(0);_server.Join();_echo_service->StopTestCase();LoadCaseSet(FLAGS_case_file);_case_index = 0;response->set_message("CaseSetReset");} else if (message == "StartCase") {CHECK(!_server.IsRunning()) << "Continuous StartCase";const test::TestCase& test_case = _case_set.test_case(_case_index++);_echo_service->SetTestCase(test_case);brpc::ServerOptions options;options.max_concurrency = FLAGS_server_max_concurrency;_server.MaxConcurrencyOf("test.EchoService.Echo") = test_case.max_concurrency();_server.Start(FLAGS_echo_port, &options);            _echo_service->StartTestCase();response->set_message("CaseStarted");} else if (message == "StopCase") {CHECK(_server.IsRunning()) << "Continuous StopCase";_server.Stop(0);_server.Join();_echo_service->StopTestCase();response->set_message("CaseStopped");} else {LOG(FATAL) << "Invalid message:" << message;response->set_message("Invalid Cntl Message");}}private:void LoadCaseSet(const std::string& file_path) {std::ifstream ifs(file_path.c_str(), std::ios::in);  if (!ifs) {LOG(FATAL) << "Fail to open case set file: " << file_path;}std::string case_set_json((std::istreambuf_iterator<char>(ifs)),  std::istreambuf_iterator<char>()); test::TestCaseSet case_set;std::string err;if (!json2pb::JsonToProtoMessage(case_set_json, &case_set, &err)) {LOG(FATAL) << "Fail to trans case_set from json to protobuf message: "<< err;}_case_set = case_set;ifs.close();}brpc::Server _server;EchoServiceImpl* _echo_service;test::TestCaseSet _case_set;int _case_index;
};int main(int argc, char* argv[]) {// Parse gflags. We recommend you to use gflags as well.GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);bthread::FLAGS_bthread_concurrency= FLAGS_server_bthread_concurrency;brpc::Server server;ControlServiceImpl control_service_impl;if (server.AddService(&control_service_impl, brpc::SERVER_DOESNT_OWN_SERVICE) != 0) {LOG(ERROR) << "Fail to add service";return -1;}if (server.Start(FLAGS_cntl_port, NULL) != 0) {LOG(ERROR) << "Fail to start EchoServer";return -1;}server.RunUntilAskedToQuit();return 0;
}

客户端代码实现

#include <gflags/gflags.h>
#include <butil/logging.h>
#include <butil/time.h>
#include <brpc/channel.h>
#include <bvar/bvar.h>
#include <bthread/timer_thread.h>
#include <json2pb/json_to_pb.h>#include <fstream>
#include "cl_test.pb.h"DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(cntl_server, "0.0.0.0:9000", "IP Address of server");
DEFINE_string(echo_server, "0.0.0.0:9001", "IP Address of server");
DEFINE_int32(timeout_ms, 3000, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 0, "Max retries(not including the first RPC)"); 
DEFINE_int32(case_interval, 20, "Intervals for different test cases");
DEFINE_int32(client_qps_change_interval_us, 50000, "The interval for client changes the sending speed");
DEFINE_string(case_file, "", "File path for test_cases");void DisplayStage(const test::Stage& stage) {std::string type;switch(stage.type()) {case test::FLUCTUATE: type = "Fluctuate";break;case test::SMOOTH:type = "Smooth";break;default:type = "Unknown";}std::stringstream ss;ss << "Stage:[" << stage.lower_bound() << ':' << stage.upper_bound() <<  "]"<< " , Type:" << type;LOG(INFO) << ss.str();
}uint32_t cast_func(void* arg) {return *(uint32_t*)arg;
}butil::atomic<uint32_t> g_timeout(0);
butil::atomic<uint32_t> g_error(0);
butil::atomic<uint32_t> g_succ(0);
bvar::PassiveStatus<uint32_t> g_timeout_bvar(cast_func, &g_timeout);
bvar::PassiveStatus<uint32_t> g_error_bvar(cast_func, &g_error);
bvar::PassiveStatus<uint32_t> g_succ_bvar(cast_func, &g_succ);
bvar::LatencyRecorder g_latency_rec;void LoadCaseSet(test::TestCaseSet* case_set, const std::string& file_path) {std::ifstream ifs(file_path.c_str(), std::ios::in);  if (!ifs) {LOG(FATAL) << "Fail to open case set file: " << file_path;}std::string case_set_json((std::istreambuf_iterator<char>(ifs)),  std::istreambuf_iterator<char>()); std::string err;if (!json2pb::JsonToProtoMessage(case_set_json, case_set, &err)) {LOG(FATAL) << "Fail to trans case_set from json to protobuf message: "<< err;}
}void HandleEchoResponse(brpc::Controller* cntl,test::NotifyResponse* response) {// std::unique_ptr makes sure cntl/response will be deleted before returning.std::unique_ptr<brpc::Controller> cntl_guard(cntl);std::unique_ptr<test::NotifyResponse> response_guard(response);if (cntl->Failed() && cntl->ErrorCode() == brpc::ERPCTIMEDOUT) {g_timeout.fetch_add(1, butil::memory_order_relaxed);LOG_EVERY_N(INFO, 1000) << cntl->ErrorText();} else if (cntl->Failed()) {g_error.fetch_add(1, butil::memory_order_relaxed);LOG_EVERY_N(INFO, 1000) << cntl->ErrorText();} else {g_succ.fetch_add(1, butil::memory_order_relaxed);g_latency_rec << cntl->latency_us();}}void Expose() {g_timeout_bvar.expose_as("cl", "timeout");g_error_bvar.expose_as("cl", "failed");g_succ_bvar.expose_as("cl", "succ");g_latency_rec.expose("cl");
}struct TestCaseContext {TestCaseContext(const test::TestCase& tc) : running(true), stage_index(0), test_case(tc), next_stage_sec(test_case.qps_stage_list(0).duration_sec() + butil::gettimeofday_s()) {DisplayStage(test_case.qps_stage_list(stage_index));Update();}bool Update() {if (butil::gettimeofday_s() >= next_stage_sec) {++stage_index;if (stage_index < test_case.qps_stage_list_size()) {next_stage_sec += test_case.qps_stage_list(stage_index).duration_sec(); DisplayStage(test_case.qps_stage_list(stage_index));} else {return false;}}int qps = 0;const test::Stage& qps_stage = test_case.qps_stage_list(stage_index);const int lower_bound = qps_stage.lower_bound();const int upper_bound = qps_stage.upper_bound();if (qps_stage.type() == test::FLUCTUATE) {qps = butil::fast_rand_less_than(upper_bound - lower_bound) + lower_bound;} else if (qps_stage.type() == test::SMOOTH) {qps = lower_bound + (upper_bound - lower_bound) / double(qps_stage.duration_sec()) * (qps_stage.duration_sec() - next_stage_sec+ butil::gettimeofday_s());}interval_us.store(1.0 / qps * 1000000, butil::memory_order_relaxed);return true;}butil::atomic<bool> running;butil::atomic<int64_t> interval_us;int stage_index;const test::TestCase test_case;int next_stage_sec;
};void RunUpdateTask(void* data) {TestCaseContext* context = (TestCaseContext*)data;bool should_continue = context->Update();if (should_continue) {bthread::get_global_timer_thread()->schedule(RunUpdateTask, data, butil::microseconds_from_now(FLAGS_client_qps_change_interval_us));} else {context->running.store(false, butil::memory_order_release);}
}void RunCase(test::ControlService_Stub &cntl_stub, const test::TestCase& test_case) {LOG(INFO) << "Running case:`" << test_case.case_name() << '\'';brpc::Channel channel;brpc::ChannelOptions options;options.protocol = FLAGS_protocol;options.connection_type = FLAGS_connection_type;options.timeout_ms = FLAGS_timeout_ms;options.max_retry = FLAGS_max_retry;if (channel.Init(FLAGS_echo_server.c_str(), &options) != 0) {LOG(FATAL) << "Fail to initialize channel";}test::EchoService_Stub echo_stub(&channel);test::NotifyRequest cntl_req;test::NotifyResponse cntl_rsp;brpc::Controller cntl;cntl_req.set_message("StartCase");cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);CHECK(!cntl.Failed()) << "control failed";TestCaseContext context(test_case);bthread::get_global_timer_thread()->schedule(RunUpdateTask, &context, butil::microseconds_from_now(FLAGS_client_qps_change_interval_us));while (context.running.load(butil::memory_order_acquire)) {test::NotifyRequest echo_req;echo_req.set_message("hello");brpc::Controller* echo_cntl = new brpc::Controller;test::NotifyResponse* echo_rsp = new test::NotifyResponse;google::protobuf::Closure* done = brpc::NewCallback(&HandleEchoResponse, echo_cntl, echo_rsp);echo_stub.Echo(echo_cntl, &echo_req, echo_rsp, done);::usleep(context.interval_us.load(butil::memory_order_relaxed));}LOG(INFO) << "Waiting to stop case: `" << test_case.case_name() << '\'';::sleep(FLAGS_case_interval);cntl.Reset();cntl_req.set_message("StopCase");cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);CHECK(!cntl.Failed()) << "control failed";LOG(INFO) << "Case `" << test_case.case_name() << "' finshed:";
}int main(int argc, char* argv[]) {// Parse gflags. We recommend you to use gflags as well.GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);Expose();brpc::Channel channel;brpc::ChannelOptions options;options.protocol = FLAGS_protocol;options.connection_type = FLAGS_connection_type;options.timeout_ms = FLAGS_timeout_ms;if (channel.Init(FLAGS_cntl_server.c_str(), &options) != 0) {LOG(ERROR) << "Fail to initialize channel";return -1;}test::ControlService_Stub cntl_stub(&channel);test::TestCaseSet case_set;LoadCaseSet(&case_set, FLAGS_case_file);brpc::Controller cntl;test::NotifyRequest cntl_req;test::NotifyResponse cntl_rsp;cntl_req.set_message("ResetCaseSet");cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);CHECK(!cntl.Failed()) << "Cntl Failed";for (int i = 0; i < case_set.test_case_size(); ++i) {RunCase(cntl_stub, case_set.test_case(i));}LOG(INFO) << "EchoClient is going to quit";return 0;
}

proto

syntax="proto2";
package test;option cc_generic_services = true;message NotifyRequest {required string message = 1;
};message NotifyResponse {required string message = 1;
};enum ChangeType {FLUCTUATE = 1;  // Fluctuating between upper and lower bound SMOOTH = 2;     // Smoothly rising from the lower bound to the upper bound 
}message Stage {required int32 lower_bound = 1;required int32 upper_bound = 2;required int32 duration_sec = 3;required ChangeType type = 4; 
}message TestCase {required string case_name = 1;required string max_concurrency = 2;repeated Stage qps_stage_list = 3;repeated Stage latency_stage_list = 4;
}message TestCaseSet {repeated TestCase test_case = 1;
}service ControlService {rpc Notify(NotifyRequest) returns (NotifyResponse);
}service EchoService {rpc Echo(NotifyRequest) returns (NotifyResponse);
};

这篇关于【brpc学习实践五】brpc自适应限流案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410617

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、