【SLAM】LVI-SAM解析——综述

2023-11-22 07:40
文章标签 解析 slam 综述 sam lvi

本文主要是介绍【SLAM】LVI-SAM解析——综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LVI-SAM可以认为是LIO-SAM和VINS-MONO的合体,在此基础上的修改不大。

github: https://github.com/TixiaoShan/LVI-SAM

paper: LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

有一个注释版的代码:https://github.com/electech6/LVI-SAM_detailed_comments

这个注释版代码中一些关于坐标系的注释我认为是有错误的,大家擦亮眼睛。LIO-SAM和VINS-MONO我也分别写过比较详细的代码解析,详情见链接。

1. 综述

 这个是论文里的流程图,很贴心的介绍了LVI-SAM改了哪些地方:

1.VINS-MONO的初始化由LIO-SAM的imuPreintefration提供;

2.VINS-MONO的feature_tracker同时和来自LIO-SAM的imageProjection的lidar进行了深度关联,就不用自己进行三角化;

3.LIO-SAM的imageProjection订阅的里程计来自VINS-MONO的estimator的imucallback提供的高频里程计;

4.VINS只进行回环检测,不做重定位,回环检测的结果提供给LIO-SAM的mapOptimization进行icp匹配+全局图优化。

代码流程图如下:

在代码里,论文中指出的来自vio的between factor并没有加上:

2.注意事项

2.1 官方数据集的坐标系统

代码里坐标系系统比较混乱,官方数据集的坐标系是这样的:

红色是相机坐标系,蓝色是lidar坐标系,绿色是LVI-SAM的坐标系,橙色是VINS的坐标系,也就是IMU坐标系。官方配置文件中params_camera.yaml里的lidar_to_cam_XX外参指蓝色和绿色之间的外参,并不是蓝色和红色之间的外参。

此外,Feature_tracker_node的get_depth()中给特征点赋予lidar深度时,忽略了cam和lidar之间的平移,即image特征的单位球和点云的单位球球心不统一,分别是cam和IMU,rotation是统一的,都是为lidar的R。

3. LVI-SAM主要改了哪些地方

3.1. image feature的数据关联

在一个位于相机中心的单位球体上投影视觉特征和激光雷达深度点,借助球面2D kdtree找到球体上最近的三个深度点。特征深度是由视觉特征和照相机中心Oc形成的线的长度,它与笛卡尔空间中由三个深度点形成的平面相交。

考虑到每帧image都会对应积攒了一段时间的lidar点云,持续被追踪的特征点可能会投影上不同的深度值。所以他们会检查一个特征点附近的深度值差判断是否采用该深度值。

lidar点云的积攒:visual_odometry/visual_feature/feature_tracker_node.cpp:lidar_callback()

深度关联:visual_odometry/visual_feature/feature_tracker.h:get_depth()

3.2 VINS的初始化

整个系统最开始初始化的地方是LIO-SAM的mapOptimization的updateInitialGuess()这里,第一帧会使用9轴IMU的pitch,roll信息确定R,首帧lidarpose确定之后提供给IMUPreintegration联合imu预积分量进行图优化,然后再发布高频的imuPose被vins-estimator-node订阅,用它计算得到的PQV+bias对VINS系统进行初始化。

获取LIO-SAM的数据: visual_odometry/visual_estimator/initial/initial_alignment.h:Class odometryRegister

VINS初始化:visual_odometry/visual_estimator/estimator.cpp: initialStructure()

3.3 其它

还有就是VINS给LIO-SAM提供pose初值,还有回环检测,这些内容都比较简单,就不贴地址了。

这篇关于【SLAM】LVI-SAM解析——综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/408581

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步