维特比算法求解HMM上的最短路径

2023-11-22 06:40
文章标签 算法 路径 求解 hmm 维特

本文主要是介绍维特比算法求解HMM上的最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是我的理解

一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。

  states = ('Rainy', 'Sunny')observations = ('walk', 'shop', 'clean')start_probability = {'Rainy': 0.6, 'Sunny': 0.4}transition_probability = {'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},}emission_probability = {'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}

在这里插入图片描述

第一天是晴天的概率=0.4×0.6=0.24
第一天是雨天的概率=0.6×0.1=0.06

并不能因此判断第一天的天气,因为他们是最初始的,只有起始点指向它们(只有一个分支)还要根据第一天晴天雨天的概率计算第二天的天气概率。

第二天的情况分为s-r,r-r,r-s,s-s。因为第二天天气往前推的分支有两个,即第二天的前一天也就是第一天的天气情况有两种,因此可以比较s-r,r-r选出概率较大的那一个,剩下的指向雨天的分支去掉。比较s-s,r-s选出概率较大的那一个,剩下指向晴天的分支去掉。
s-r=0.4×8.6×0.4×0.4=0.384
r-r=0.6×0.1×0.7×0.4=0.168(舍)
s-s=0.4×0.6×0.6×0.3=0432
r-s=0.6×0.6×0.3×0.3=0.0054(舍)
在这里插入图片描述

同理选出第三天的天气,即为所求

演算

请添加图片描述

代码(参考网络)

states = ('Rainy', 'Sunny')observations = ('walk', 'shop', 'clean')start_probability = {'Rainy': 0.6, 'Sunny': 0.4}transition_probability = {'Rainy': {'Rainy': 0.7, 'Sunny': 0.3},'Sunny': {'Rainy': 0.4, 'Sunny': 0.6},
}emission_probability = {'Rainy': {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},'Sunny': {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}# 打印路径概率表
def print_dptable(V):print("    ")for i in range(len(V)): print("%7d" % i)# printfor y in V[0].keys():print("%.5s: " % y)for t in range(len(V)):print("%.7s" % ("%f" % V[t][y]))# printdef viterbi(obs, states, start_p, trans_p, emit_p):""":param obs:观测序列:param states:隐状态:param start_p:初始概率(隐状态):param trans_p:转移概率(隐状态):param emit_p: 发射概率 (隐状态表现为显状态的概率):return:"""# 路径概率表 V[时间][隐状态] = 概率V = [{}]# 一个中间变量,代表当前状态是哪个隐状态path = {}# 初始化初始状态 (t == 0)for y in states:V[0][y] = start_p[y] * emit_p[y][obs[0]]path[y] = [y]# 对 t > 0 跑一遍维特比算法for t in range(1, len(obs)):V.append({})newpath = {}for y in states:# 概率 隐状态 =    前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率(prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])# 记录最大概率V[t][y] = prob# 记录路径newpath[y] = path[state] + [y]# 不需要保留旧路径path = newpathprint_dptable(V)(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])return (prob, path[state])def example():return viterbi(observations,states,start_probability,transition_probability,emission_probability)print(example())

运行结果

在这里插入图片描述

原题链接
viterbi

这篇关于维特比算法求解HMM上的最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/408237

相关文章

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl