【Python数据结构与算法】--- 递归算法应用-五行代码速解汉诺塔问题.

本文主要是介绍【Python数据结构与算法】--- 递归算法应用-五行代码速解汉诺塔问题.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌈个人主页: Aileen_0v0
🔥系列专栏:PYTHON数据结构与算法学习系列专栏
💫"没有罗马,那就自己创造罗马~" 


汉诺塔

两层汉诺塔的演示 

三层汉诺塔的走法演示

我不知道有没有朋友跟我一样有一个疑问,如果我们顶端的先放到中间柱子呢? 

但是实际上汉诺塔问题解决方案都是最优解,我们不走弯路,我们的目的性非常强,我们最终目的都是移动到c,所以我们可以先让顶端的木块直接到c 

解题思路:

不妨将这个问题拆解,n个汉诺塔,我们可以把最底下最大那个看成单独的一个,上面的(n - 1)个,看成一个整体.这样子最底下那个可以直接从 A 移动到 C,剩下上面的 ( n - 1 ) 个汉诺塔我们可以先从A 通过 C 移动到 B . 再从B通过 A 移动到 C.  

这样子不断进行递归,问题规模就可以逐层减小.

代码:

def hanoi(n,a,b,c):#n为层数 a,b,c是杆子if n>0:#将中间 n - 1 个盘子当成一个整体,通过c盘从a移动到b盘hanoi(n-1,a,c,b) # 中间柱子变目标print("Moving  from %s to %s" %(a,c)) # 对应一个柱子的时候hanoi(n-1,b,a,c) # 最后一个柱子变成目标hanoi(1,"A","B","C")

 运行结果:


青蛙跳台阶 

 

总结一下规律:

我们可以发现

跳  n 个台阶的台阶数对应的跳法 = 跳 (n - 1)个台阶时候的跳法 + 跳 (n - 2)个台阶时候的跳法. 

这有点像我们的斐波那契数列.

青蛙跳台阶的问题相当于动态规划的问题 .

动态规划:用上一步的结果,来快速计算得到下一步的结果.

递归的思路:

当只有1个台阶时,只有一种跳法;当有2个台阶时,有两种跳法;当台阶数大于2时,青蛙可以选择跳一步到第n-1个台阶,也可以选择跳两步到第n-2个台阶,所以总的跳法数是跳到第n-1个台阶的跳法数加上跳到第n-2个台阶的跳法数。

这里是青蛙跳台阶的Python递归实现

def frog_jump(n):if n == 1:return 1elif n == 2:return 2else:return frog_jump(n-1) + frog_jump(n-2)

其中,n表示台阶数,函数返回青蛙跳到第n个台阶的跳法数。

需要注意的是,这种递归实现虽然简单易懂,但是时间复杂度为指数级别的,所以不能用于大规模的数据处理。

这篇关于【Python数据结构与算法】--- 递归算法应用-五行代码速解汉诺塔问题.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/407828

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in