【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现

本文主要是介绍【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、Jacobi 旋转法
    • 1. 基本思想
    • 2. 计算过程演示
    • 3. 注意事项
  • 二、Python实现
    • 迭代过程(调试)

  矩阵的特征值(eigenvalue)和特征向量(eigenvector)在很多应用中都具有重要的数学和物理意义。Jacobi 旋转法是一种用于计算对称矩阵特征值和特征向量的迭代方法。

  本文将详细介绍 Jacobi 旋转法的基本原理和步骤,通过一个具体的矩阵示例演示其应用过程,并给出其Python实现。

一、Jacobi 旋转法

  Jacobi 旋转法的每一次迭代中,需要选择一个非对角元素最大的位置,然后构造相应的旋转矩阵,进行相似变换,使得矩阵逐渐对角化。

  • 对称矩阵是一个实数矩阵,其转置与自身相等。
  • 对于一个方阵 A A A,如果存在标量 λ λ λ 和非零向量 v v v,使得 A v = λ v Av = λv Av=λv,那么 λ λ λ 就是 A A A 的特征值, v v v 就是对应于 λ λ λ 的特征向量。

1. 基本思想

  Jacobi 旋转法的基本思想是通过一系列的相似变换,逐步将对称矩阵对角化,使得非对角元素趋于零。这个过程中,特征值逐渐浮现在对角线上,而相应的特征向量也被逐步找到。下面是 Jacobi 旋转法的基本步骤:

  1. 选择旋转角度: 选择一个旋转角度 θ,通常使得旋转矩阵中的非对角元素为零,从而实现对角化,通常选择非对角元素中绝对值最大的那个作为旋转的目标。

  2. 构造旋转矩阵: 构造一个旋转矩阵 J,该矩阵为单位矩阵,只有对应于选择的非对角元素的位置上有两个非零元素,其余位置上为零。这两个非零元素的值由旋转角度 θ 决定,例如,对于 2x2 矩阵,旋转矩阵可以表示为:
    J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

  3. 相似变换: 计算相似变换矩阵 P P P,即 P T A P P^TAP PTAP,其中 A A A 是原始矩阵, P P P 是旋转矩阵,计算过程如下:

P T A P = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] T [ a 11 a 12 a 12 a 22 ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] P^TAP = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} PTAP=[cos(θ)sin(θ)sin(θ)cos(θ)]T[a11a12a12a22][cos(θ)sin(θ)sin(θ)cos(θ)]

  通过矩阵相乘计算,我们可以得到 P T A P P^TAP PTAP 中的非对角元素,假设这两个元素分别位于矩阵的 (1,2) 和 (2,1) 的位置。令 a i j a_{ij} aij 为这两个元素,即 a i j = a 12 = a 21 a_{ij}= a_{12} = a_{21} aij=a12=a21

  接下来,我们希望通过选择合适的 θ \theta θ使得 a i j a_{ij} aij 变为零,从而达到对角化的目的,即 a 12 = a 21 a_{12} = a_{21} a12=a21,进一步可推导出

θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)

  • a i i = a j j a_{ii}=a_{jj} aii=ajj,则使用 a r c c o t arccot arccot形式
  1. 迭代: 重复步骤 1-3,直到矩阵 A 的非对角元素都趋于零或满足一定的精度要求。

  2. 提取特征值和特征向量: 对角线上的元素即为矩阵 A 的特征值,而 P 中的列向量即为对应于这些特征值的特征向量。

2. 计算过程演示

  对于矩阵
A = [ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} A= 210121012

  我们首先找到非对角元素中绝对值最大的元素,这里我们以 (2,1) 为例,计算旋转角度和旋转矩阵。

  1. 选择旋转角度:

      计算旋转角度 θ \theta θ公式:
    θ = 1 2 arctan ⁡ ( 2 ⋅ a i j a i i − a j j ) \theta = \frac{1}{2} \arctan\left(\frac{2 \cdot a_{ij}}{a_{ii} - a_{jj}}\right) θ=21arctan(aiiajj2aij)其中, a i i a_{ii} aii a j j a_{jj} ajj 分别是矩阵的对角元素,而 a i j a_{ij} aij 是非对角元素,即 a 21 a_{21} a21。 在这个例子中, a 21 = − 1 a_{21} = -1 a21=1 a 11 = a 22 = 2 a_{11} = a_{22} = 2 a11=a22=2

    θ = 1 2 arctan ⁡ ( − 2 0 ) = − π 4 \theta = \frac{1}{2} \arctan\left(\frac{-2}{0}\right) = -\frac{\pi}{4} θ=21arctan(02)=4π

  2. 构造旋转矩阵:

    构造旋转矩阵 ( J ):

J = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] J = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} J=[cos(θ)sin(θ)sin(θ)cos(θ)]

对于 θ = − π 4 \theta = -\frac{\pi}{4} θ=4π

J = [ cos ⁡ ( − π 4 ) − sin ⁡ ( − π 4 ) sin ⁡ ( − π 4 ) cos ⁡ ( − π 4 ) ] J = \begin{bmatrix} \cos\left(-\frac{\pi}{4}\right) & -\sin\left(-\frac{\pi}{4}\right) \\ \sin\left(-\frac{\pi}{4}\right) & \cos\left(-\frac{\pi}{4}\right) \end{bmatrix} J=[cos(4π)sin(4π)sin(4π)cos(4π)]

计算得:

J = [ 2 2 2 2 − 2 2 2 2 ] J = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} J=[22 22 22 22 ]

  1. 相似变换:

    计算相似变换矩阵 P P P

    P T A P P^T A P PTAP

    在这里, P P P就是构造的旋转矩阵 J J J

  2. 迭代:

    重复上述步骤,直到矩阵足够接近对角矩阵。

  这个过程会一步步地使矩阵趋近于对角矩阵,对角线上的元素就是矩阵的特征值,而相应的列向量就是对应的特征向量。由于计算较为繁琐,我在这里只展示了一个迭代的过程。在实际应用中,你需要进行多次迭代,直到满足精度的要求。
在这里插入图片描述
在这里插入图片描述

3. 注意事项

  Jacobi 旋转法的优点是可以用于任意大小的对称矩阵,但其缺点是迭代次数较多,计算量较大。在实际应用中,通常会结合其他方法来提高计算效率。

二、Python实现

import numpy as npdef jacobi_rotation(A):n = A.shape[0]tolerance = 1e-10max_iterations = 1000eigenvectors = np.eye(n)for _ in range(max_iterations):# 寻找最大的非对角元素max_off_diag = np.max(np.abs(np.triu(A, k=1)))if max_off_diag < tolerance:break  # 达到收敛条件# 找到最大元素的索引indices = np.unravel_index(np.argmax(np.abs(np.triu(A, k=1))), A.shape)i, j = indices# 计算旋转角度theta = 0.5 * np.arctan2(2 * A[i, j], A[i, i] - A[j, j])# 构造旋转矩阵J = np.eye(n)J[i, i] = J[j, j] = np.cos(theta)J[i, j] = -np.sin(theta)J[j, i] = np.sin(theta)# 执行相似变换A = np.dot(np.dot(J.T, A), J)# 更新特征向量eigenvectors = np.dot(eigenvectors, J)# 提取特征值eigenvalues = np.diag(A)return eigenvalues, eigenvectors# 示例矩阵
A = np.array([[2, -1, 0],[-1, 2, -1],[0, -1, 2]])# 执行 Jacobi 旋转
eigenvalues, eigenvectors = jacobi_rotation(A)print("特征值:", eigenvalues)
print("特征向量:")
np.set_printoptions(precision=4, suppress=True)
print(eigenvectors)

在这里插入图片描述

迭代过程(调试)

  • 第一次:
    在这里插入图片描述
  • 第二次:在这里插入图片描述
    ………
  • 第九次:
    在这里插入图片描述

这篇关于【数值计算方法】矩阵特征值与特征向量的计算(一):Jacobi 旋转法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405526

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的