uva_1103 刘汝佳《算法竞赛入门经典》例6-13象形文字识别(连通图的综合应用)

本文主要是介绍uva_1103 刘汝佳《算法竞赛入门经典》例6-13象形文字识别(连通图的综合应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

连通图问题 较为综合性题目:#象形文字判断#

问题描述:

Figure C.1 shows six hieroglyphs and their names. In this problem, you will write a program to recognize these six characters.
在这里插入图片描述
题意:

    输入以16进制形式矩阵表示的0 1(0代表白色像素点,1代表黑色像素点)图像,判断图像中包含以上哪些象形文字。其中一幅图像可能包含多个象形文字,结果按照字典序进行输出。•图像仅包含图C.1中所示的象形文字。•每个图像至少包含一个有效的象形文字。•图像中的每个黑色像素都是有效象形文字的一部分。•每个象形文字由一组连接的黑色像素组成,每个黑色像素至少有一个顶部,底部,左侧或右侧的其他黑色像素。•象形文字没有触及,另一个象形文字中没有象形文字。•对角线接触的两个黑色像素将始终具有共同的触摸黑色像素。•象形文字可能会扭曲,但每个都有一个在拓扑上等同于其中一个的形状 图C.1中的符号。 (如果每个都可以转换,两个数字在拓扑上是等价的 通过伸展而不撕裂进入另一个。)

题目给出了对于象形文字的编码:

Ankh: A
Wedjat: J 
Djed: D 
Scarab: S 
Was: W 
Akhet: K

例:
在这里插入图片描述

核心问题:
1、如何通过像素(0,1)图像判断是哪种象形文字?

答:这是一个从抽象的图形问题转化为具体的数字/特征问题的过程,开始的时候自己没有思路,注意到了题目中说的拓扑等价,但还是没有具体的判断办法。
对此,入门经典书中所说的是数空洞的个数。图C中象形文字对应的空洞个数分别为:1,3,5,4,0,2。这样一来,就把一个抽象的图像问题转化成了连通图(白像素点)的个数判断问题。
对于此种以图像作为输入的问题,要通过找图像的特征属性来解决问题!

2、如何数白洞
自己第一个想法是:
* 找到一个未被标记的白像素点
* 判断该点是否上下左右延伸边界都是黑点(以此来判断该点是不是白洞内点)
* 若是,则将连通的白像素点全部标记,白洞个数加一。

但善于观察的读者可以发现,这个方法是不正确的,原因在于象形文字具有斜度所以有些点虽然满足前两个条件但其实并不是白洞内点。
例如这个槽内的点:
在这里插入图片描述
在发现后进行了改正:直接无差异地遍历白点,在DFS遍历过程中添加一个标志量,在遍历连通白点的过程中判断是否到达图像边界,如果能够到达边界则将标志量置为false说明这些点均为白洞外的无效点。
这样一来就成功解决了数白洞的问题。

代码:

    void dfs_w(int x,int y,bool &if_in)//将洞内的白点连通并标记{flag[x][y] = true;for(int i=0;i<8;i++){int nx=x+mov[i][0];int ny=y+mov[i][1];if(!legal(nx,ny))//能够到达边界说明不是内点{if_in = false;}else if(!binary[nx][ny]&&!flag[nx][ny]){dfs_w(nx,ny,if_in);}}}

3、一个图像中包含多个文字,如何区分出来?
此问题以前的分析都是建立在图像中只有一个文字的前提下,不幸的是题目中说一幅图像会包含>=1个象形文字。
那么如何判断图像中有几个文字,一个空洞属于哪个文字呢?
第一个问题:同样是数连通图的方法,同时对每个独立的连通图进行编号。这样也就顺带解决了第二个问题。
对于一个白洞,只要沿任意方向找个一个黑像素点,判断此黑像素点属于哪个文字,就在此文字的白洞数量上加1。

代码:

int cnt=0;//文字个数for(int i=0;i<h;i++)for(int j=0;j<4*w;j++){if(binary[i][j]&&!flag_b[i][j]){dfs_b(i,j,++cnt);}}
void dfs_b(int x,int y,int cnt)//将图像内的文字编号 cnt
{flag_b[x][y] = cnt;for(int i=0;i<8;i++){int nx=x+mov[i][0];int ny=y+mov[i][1];if(legal(nx,ny)&&binary[nx][ny]&&!flag_b[nx][ny]){dfs_b(nx,ny,cnt);}}
}
for(int i=0;i<h;i++)//遍历白洞同时给对应我文字添加白洞个数for(int j=0;j<4*w;j++){if(!binary[i][j]&&!flag[i][j]){bool if_in=true;dfs_w(i,j,if_in);if(if_in){int tmp_j=j;while(!binary[i][++tmp_j]){}//注意这里的要写++tmp_j,否则取得的位置是黑像素点的下个位置。num_hole[flag_b[i][tmp_j]]++;//文字白洞个数+1}}}

全部代码:

#include<bits/stdc++.h>
using namespace std;int h,w;
char image[210][55];
int binary[210][210];
bool flag[210][210];
int flag_b[210][210];
int num_hole[1000];
int mov[8][2]={-1,-1,-1,0,-1,1,0,-1,0,1,1,-1,1,0,1,1};
char code[6]={'W','A','K','J','S','D'};void get_image()
{for(int i=0;i<h;i++)for(int j=0;j<w;j++){cin>>image[i][j];}
}void get_binary()//与上面其实可以合并
{for(int i=0;i<h;i++){for(int j=0;j<w;j++){char c = image[i][j];int tmp;if(isalpha(c))tmp = c-'a'+10;elsetmp = c - '0';binary[i][j*4] = tmp/8;tmp%=8;//将16进制转化为2进制的一个小trickbinary[i][j*4+1] = tmp/4;tmp%=4;binary[i][j*4+2] = tmp/2;binary[i][j*4+3] = tmp%2;}}}bool legal(int x,int y)
{if(x>=0&&x<h&&y>=0&&y<w*4)return true;elsereturn false;
}void dfs_b(int x,int y,int cnt)//将图像内的文字编号
{flag_b[x][y] = cnt;for(int i=0;i<8;i++){int nx=x+mov[i][0];int ny=y+mov[i][1];if(legal(nx,ny)&&binary[nx][ny]&&!flag_b[nx][ny]){dfs_b(nx,ny,cnt);}}
}void dfs_w(int x,int y,bool &if_in)//将洞内的白点连通并标记
{flag[x][y] = true;for(int i=0;i<8;i++){int nx=x+mov[i][0];int ny=y+mov[i][1];if(!legal(nx,ny))//能够到达边界说明不是内点{if_in = false;}else if(!binary[nx][ny]&&!flag[nx][ny]){dfs_w(nx,ny,if_in);}}
}int main()
{int T=0;while(cin>>h>>w&&h){memset(flag,false,sizeof(flag));memset(flag_b,0,sizeof(flag_b));memset(num_hole,0,sizeof(num_hole));get_image();get_binary();int cnt=0;for(int i=0;i<h;i++)for(int j=0;j<4*w;j++){if(binary[i][j]&&!flag_b[i][j]){dfs_b(i,j,++cnt);}}for(int i=0;i<h;i++)for(int j=0;j<4*w;j++){if(!binary[i][j]&&!flag[i][j]){bool if_in=true;dfs_w(i,j,if_in);if(if_in){//cout<<"yes"<<endl;int tmp_j=j;while(!binary[i][++tmp_j]){}//cout<<i<<" "<<tmp_j<<endl;num_hole[flag_b[i][tmp_j]]++;}}}printf("Case %d: ",++T);vector<char>v;for(int i=1;i<=cnt;i++){//cout<<num_hole[i]<<endl;v.push_back(code[num_hole[i]]);}sort(v.begin(),v.end());for(int i=0;i<v.size();i++)printf("%c",v[i]);printf("\n");}return 0;
}

这篇关于uva_1103 刘汝佳《算法竞赛入门经典》例6-13象形文字识别(连通图的综合应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405217

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig