otto案例介绍 -- Otto Group Product Classification Challenge【xgboost实现】

本文主要是介绍otto案例介绍 -- Otto Group Product Classification Challenge【xgboost实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【机器学习】otto案例介绍

  • 1. 背景介绍
  • 2. 思路分析
  • 3. 代码实现
    • 3.1 数据获取
    • 3.2 数据基本处理
      • 3.2.1 截取部分数据
      • 3.2.2 把标签值转换为数字
      • 3.2.3 分割数据
      • 3.2.4 数据标准化
      • 3.2.5 数据PCA降维
    • 3.3 模型训练
      • 3.3.1 基本模型训练
      • 3.3.2 模型调优
        • 3.3.2.1 确定最优的estimators
        • 3.3.2.2 确定最优的max_depth
        • 3.3.2.3 依据上面模式,运行调试下面参数
      • 3.3.3 最优模型

1. 背景介绍

奥托集团是世界上最⼤的电⼦商务公司之⼀,在20多个国家设有⼦公司。该公司每天都在世界各地销售数百万种产品, 所以对其产品根据性能合理的分类⾮常重要。

不过,在实际⼯作中,⼯作⼈员发现,许多相同的产品得到了不同的分类。本案例要求,你对奥拓集团的产品进⾏正确的分分 类。尽可能的提供分类的准确性。

链接:https://www.kaggle.com/c/otto-group-product-classification-challenge/overview

在这里插入图片描述

2. 思路分析

  • 1.数据获取
  • 2.数据基本处理
    • 2.1 截取部分数据
    • 2.2 把标签纸转换为数字
    • 2.3 分割数据(使⽤StratifiedShuffleSplit)
    • 2.4 数据标准化
    • 2.5 数据pca降维
  • 3.模型训练
    • 3.1 基本模型训练
    • 3.2 模型调优
      • 3.2.1 调优参数:
        • n_estimator,
        • max_depth,
        • min_child_weights,
        • subsamples,
        • consample_bytrees,
        • etas
      • 3.2.2 确定最后最优参数

3. 代码实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

3.1 数据获取

data = pd.read_csv("./data/otto/train.csv")

在这里插入图片描述

data.shape
(61878, 95)
data.describe()

在这里插入图片描述

# 图形可视化,查看数据分布
import seaborn as snssns.countplot(data.target)plt.show()

在这里插入图片描述
由上图可以看出,该数据类别不均衡,所以需要后期处理

3.2 数据基本处理

数据已经经过脱敏,不再需要特殊处理

3.2.1 截取部分数据

new1_data = data[:10000]
new1_data.shape
# 图形可视化,查看数据分布
import seaborn as snssns.countplot(new1_data.target)plt.show()

在这里插入图片描述
使用上面方式获取数据不可行,然后使用随机欠采样获取响应的数据

# 随机欠采样获取数据
# 首先需要确定特征值\标签值y = data["target"]
x = data.drop(["id", "target"], axis=1)

在这里插入图片描述

# 欠采样获取数据
from imblearn.under_sampling import RandomUnderSamplerrus = RandomUnderSampler(random_state=0)X_resampled, y_resampled = rus.fit_resample(x, y)
x.shape, y.shape
X_resampled.shape, y_resampled.shape

在这里插入图片描述

# 图形可视化,查看数据分布
import seaborn as snssns.countplot(y_resampled)plt.show()

在这里插入图片描述

3.2.2 把标签值转换为数字

y_resampled.head()

在这里插入图片描述

from sklearn.preprocessing import LabelEncoderle = LabelEncoder()
y_resampled = le.fit_transform(y_resampled)

在这里插入图片描述

3.2.3 分割数据

from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2)
x_train.shape, y_train.shape

在这里插入图片描述

# 图形可视化
import seaborn as snssns.countplot(y_test)
plt.show()

在这里插入图片描述

# 通过StratifiedShuffleSplit实现数据分割from sklearn.model_selection import StratifiedShuffleSplitsss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0)for train_index, test_index in sss.split(X_resampled.values, y_resampled):print(len(train_index))print(len(test_index))x_train = X_resampled.values[train_index]x_val = X_resampled.values[test_index]y_train = y_resampled[train_index]y_val = y_resampled[test_index]

13888
3473

print(x_train.shape, x_val.shape)
(13888, 93) (3473, 93)
# 图形可视化
import seaborn as snssns.countplot(y_val)
plt.show()

在这里插入图片描述

3.2.4 数据标准化

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
scaler.fit(x_train)x_train_scaled = scaler.transform(x_train)
x_val_scaled = scaler.transform(x_val)

3.2.5 数据PCA降维

x_train_scaled.shape
(13888, 93)
from sklearn.decomposition import PCApca = PCA(n_components=0.9)x_train_pca = pca.fit_transform(x_train_scaled)
x_val_pca = pca.transform(x_val_scaled)
print(x_train_pca.shape, x_val_pca.shape)
# 可视化数据降维信息变化程度
plt.plot(np.cumsum(pca.explained_variance_ratio_))plt.xlabel("元素数量")
plt.ylabel("表达信息百分占比")plt.show()

在这里插入图片描述

3.3 模型训练

3.3.1 基本模型训练

from xgboost import XGBClassifierxgb = XGBClassifier()
xgb.fit(x_train_pca, y_train)
# 输出预测值,一定输出带有百分占比的预测值
y_pre_proba = xgb.predict_proba(x_val_pca)
y_pre_proba

在这里插入图片描述

# logloss评估
from sklearn.metrics import log_losslog_loss(y_val, y_pre_proba, eps=1e-15, normalize=True)
0.735851001353164
xgb.get_params

在这里插入图片描述

3.3.2 模型调优

3.3.2.1 确定最优的estimators
scores_ne = []
n_estimators = [100, 200, 300, 400, 500, 550, 600, 700]
for nes in n_estimators:print("n_estimators:", nes)xgb = XGBClassifier(max_depth=3,learning_rate=0.1, n_estimators=nes, objective="multi:softprob", n_jobs=-1, nthread=4, min_child_weight=1,subsample=1,colsample_bytree=1,seed=42)xgb.fit(x_train_pca, y_train)y_pre = xgb.predict_proba(x_val_pca)score = log_loss(y_val, y_pre)scores_ne.append(score)print("每次测试的logloss值是:{}".format(score))
# 图形化展示相应的logloss值
plt.plot(n_estimators, scores_ne, "o-")plt.xlabel("n_estimators")
plt.ylabel("log_loss")
plt.show()print("最优的n_estimators值是:{}".format(n_estimators[np.argmin(scores_ne)]))
3.3.2.2 确定最优的max_depth
scores_md = []
max_depths = [1,3,5,6,7]
for md in max_depths:print("max_depth:", md)xgb = XGBClassifier(max_depth=md,learning_rate=0.1, n_estimators=n_estimators[np.argmin(scores_ne)], objective="multi:softprob", n_jobs=-1, nthread=4, min_child_weight=1,subsample=1,colsample_bytree=1,seed=42)xgb.fit(x_train_pca, y_train)y_pre = xgb.predict_proba(x_val_pca)score = log_loss(y_val, y_pre)scores_md.append(score)print("每次测试的logloss值是:{}".format(score))
# 图形化展示相应的logloss值
plt.plot(max_depths, scores_md, "o-")plt.xlabel("max_depths")
plt.ylabel("log_loss")
plt.show()print("最优的max_depths值是:{}".format(max_depths[np.argmin(scores_md)]))
3.3.2.3 依据上面模式,运行调试下面参数
min_child_weights,subsamples,consample_bytrees,etas

3.3.3 最优模型

xgb = XGBClassifier(learning_rate =0.1, n_estimators=550, max_depth=3, min_child_weight=3, subsample=0.7, colsample_bytree=0.7, nthread=4, seed=42, objective='multi:softprob')xgb.fit(x_train_scaled, y_train)y_pre = xgb.predict_proba(x_val_scaled)print("测试数据的log_loss值为 : {}".format(log_loss(y_val, y_pre, eps=1e-15, normalize=True)))

加油!

感谢!

努力!

这篇关于otto案例介绍 -- Otto Group Product Classification Challenge【xgboost实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/404845

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa