六大排序详讲(直接插入排序+希尔排序+选择排序+堆排序+冒泡排序+快速排序)

本文主要是介绍六大排序详讲(直接插入排序+希尔排序+选择排序+堆排序+冒泡排序+快速排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 排序
    • 一、 排序的概念
      • 1.排序:
      • 2.稳定性:
      • 3.内部排序:
      • 4.外部排序:
    • 二、插入排序
      • 1.直接插入排序
      • 2.希尔排序
    • 三、选择排序
      • 1.直接选择排序
          • 方法一
          • 方法二
          • 直接插入排序和直接排序的区别
      • 2.堆排序
    • 四、交换排序
      • 1.冒泡排序
      • 2.快速排序
          • 1.挖坑法
          • 2.Hoare法
          • 3.前后指针法
          • 4.快速排序的优化
            • 方法一:随机选取基准值
            • 方法二:三数取中法选基准值
            • 方法三:递归到最小区间时、用插入排序
          • 5.快速排序非递归实现

排序


一、 排序的概念

1.排序:

  • 一组数据按递增/递减排序

2.稳定性:

在这里插入图片描述

  • 待排序的序列中,存在多个相同的关键字,拍完序后,相对次序保持不变,就是稳定的

3.内部排序:

  • 数据元素全部放在内存中的排序

4.外部排序:

  • 数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

二、插入排序

1.直接插入排序

在这里插入图片描述

和整理扑克牌类似,将乱序的牌,按值的大小,插入整理好的顺序当中

从头开始,比最后一个小的话依次向前挪,直到大于之前牌时,进行插入

在这里插入图片描述

1.如果只有一个值,则这个值有序,所以插入排序, i 从下标1开始,把后面的无序值插入到前面的有序当中

2.j = i-1,是i的前一个数,先用tmp将 i位置的值(要插入的值)先存起来,比较tmp和j位置的值

3.如果tmp的值比 j位置的值小,说明要向前插入到有序的值中,把 j位置的值后移,移动到 j+1的位置,覆盖掉 i 的值

4.j 下标向前移动一位,再次和 tmp 比较

5.如果tmp的值比 j 位置的值大,说明找到了要插入的位置就在当前j位置之后,把tmp存的值,放到 j+1的位置

6.如果tmp中存的值比有序的值都小,j位置的值依次向后移动一位,j不停减1,直到排到第一位的数移动到第二位,j的下标从0移动到-1,循环结束,最后将tmp中存的值,存放到 j+1的位置,也就是0下标

    public void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int tmp = array[i];//tmp存储i的值int j = i - 1;for (; j >= 0; j--) {if (tmp < array[j]) {array[j + 1] = array[j];} else {// array[j+1] = tmp;break;}}array[j + 1] = tmp;}}

插入就是为了维护前面的有序

  • 元素越接近有序,直接插入排序算法的时间效率越高

  • 时间复杂度O( N 2 )

  • 空间复杂度O ( 1 )

  • 稳定性:稳定

    如果一个排序是稳定的,可以改变实现为不稳定的

    如果是不稳定的排序,则没有办法改变

2.希尔排序

在这里插入图片描述

希尔排序shellSort 叫缩小增量排序,是对直接插入排序的优化,先分组,对每组插入排序,让整体逐渐有序

利用了插入排序元素越有序越快的特点

在这里插入图片描述

  • 先确定一个整数,把待排序数分成多个组,每个组中的数距离相同,
  • 对每一组进行排序,然后再次分组排序,减少分组数,组数多,每组数据就少
  • 找到分组数=1时,基本有序了,只需要再排一次插入排序即可

一开始组数多,每组数据少,可以保证效率

随着组数的减少,每组数据变多,数据越来越有序,同样保证了效率

到达1分组之前,前面的排序都是预排序

    public static void shellSort2(int[] array) {int gap = array.length;while (gap > 1) { //gap>1时缩小增量gap /= 2;//直接在循环内进行最后一次排序shell(array, gap);}}/**** 希尔排序* 时间复杂度O(N^1.3---N^1.5)* @param array*/public static void shellSort1(int[] array) {int gap = array.length;while (gap > 1) { //gap>1时缩小增量shell(array, gap);gap /= 2;//gap==1时不进入循环,再循环为再次排序}shell(array, gap);//组数为1时,进行插入排序}public static void shell(int[] arr, int gap) {//本质上还是插入排序,但是i和j的位置相差为组间距for (int i = gap ; i < arr.length; i++) {int tmp = arr[i];int j = i-gap;for (; j >=0; j -= gap) {if (tmp<arr[j]){arr[j+gap] = arr[j];}else {break;}}arr[j+gap] = tmp;}}
  • 时间复杂度:O( N^1.3 ^) ---- O( N^1.5 ^)
  • 空间复杂的:O(1)
  • 稳定性:不稳定

三、选择排序

在这里插入图片描述

  • 在待排序序列中,找到最小值(大)的下标,和排好序的末尾交换,放到待排序列的开头,直到全部待排序元素排完

1.直接选择排序

在这里插入图片描述

方法一

    /*** 选择排序** @param array*/public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i + 1; j < array.length; j++) {//找最小值if (array[j] < array[minIndex]) {minIndex = j;//只要比minIndex小,放进去}}//循环走完后,minIndex存的就是当前未排序的最小值//将当前i的值和找到的最小值进行交换swap(array,i,minIndex);}}public static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

1.遍历数组长度,i从0开始

2.每次循环,都由minIndex = i 来记录最小值的下标

3.j 从i+1开始遍历,只要比记录的最小值小,就让minIndex记录。找到未排序中的最小值,进行交换

4.如果遍历完后,未排序中没有比minIndex存的值小,i的值就是最小值,i++;

  • 效率低, 如果较为有序的序列,在交换时会破坏有序性
  • 时间复杂度:O ( N2 )
  • 空间复杂的:O ( 1 )
  • 稳定性:不稳定
方法二
  • 上面的方法,只是先选出最小的值,然后和i的位置交换,

  • 进行优化:在遍历时选出最大值和最小值,和收尾进行交换

在这里插入图片描述

   /*** 选择排序---选最大值和最小值** @param array*/public static void selectSort2(int[] array) {int left = 0;int right = array.length - 1;while (left < right) {int minIndex = left;int maxIndex = left;//选出最大值和最小值for (int i = left + 1; i <= right; i++) {if (array[i] > array[maxIndex]) {maxIndex = i;}if (array[i] < array[minIndex]) {minIndex = i;}}//用最大值和最小值交换首位swap(array, left, minIndex);//把left和最小值交换//如果left恰好就是最大值,就有可能把最大值换到minIndex的位置if(left == maxIndex){maxIndex = minIndex;//最大值位置不是left了,而是换到了minIndex}swap(array, right, maxIndex);left++;right--;}}

1.在遍历的过程中,选出最大值的下标和最小值的下标

2.将left和最小值进行交换

3.如果left恰好为最大值,left和最小值交换完成后,最大值就在原来最小值的位置上,

4.maxIndex = minIndex,修正最大值的位置

4.将right和最大值进行交换

直接插入排序和直接排序的区别
  • 和插入排序不同的是,插入排序会持续对已排序的数进行比较,把合适的数放在合适的位置
  • 直接选择排序就是不断找到最小的值,依次放在排好序的末尾,不干预排好的序列

2.堆排序

  • 时间复杂度: O( N * log N)
  • 空间复杂的:O (1)
  • 升序:建大堆

  • 降序:建小堆

  • 在这里插入图片描述

将一组数据从小到大排序 ——> 建立大根堆

为什么不用小根堆:小根堆只能保证,根比左右小,不能保证左右孩子的大小顺序,并且要求对数组本身进行排序

  • 大根堆,保证堆顶元素是最大值,最大值跟最后一个元素交换,将最大的放在最后,usedSize–;
  • 向下调整:调整0下标的树,维护大根堆,最大值继续交换到最后一个有效元素的位置
  • 从后往前,从大到小依次排列,保证在原来数组本身进行排序
    /*** 堆排序* 时间复杂度: N*logN* 空间复杂的:o(1)** @param array*/public static void heapSort(int[] array) {createBigHeap(array);//创建大根堆int end = array.length-1;while (end>0){swap(array,0,end);//堆顶元素和末尾互换shiftDown(array,0,end);//维护大根堆end--;}}/*** 创建大根堆** @param array*/public static void createBigHeap(int[] array) {//最后一个结点的下标 = array.length - 1//它的父亲结点的下标就为array.length - 1 - 1) / 2for (int parent = (array.length - 1 - 1) / 2; parent >= 0; parent--) {shiftDown(array, parent, array.length);}}/*** 向下调整** @param array* @param parent* @param len*///向下调整,每棵树从父结点向下走public static void shiftDown(int[] array, int parent, int len) {int child = parent * 2 + 1;while (child < len) {//child < len:最起码要有一个左孩子if (child + 1 < len && array[child] < array[child + 1]) {child++;}//child + 1<len:保证一定有右孩子的情况下,和右孩子比较//拿到子节点的最大值if (array[child] > array[parent]) {swap(array, child, parent);parent = child;//交换完成后,让parent结点等于等于当前child结点child = 2 * parent + 1;//重新求子节点的位置,再次进入循环交换} else {break;//比父结点小,结束循环}}}
  • 时间复杂度: O( N * log 2N)
  • 空间复杂的:O (1)
  • 稳定性:不稳定

四、交换排序

  • 根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置
  • 将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

1.冒泡排序

在这里插入图片描述

    /*** 冒泡排序* 时间复杂度 n^2* 空间复杂度  1* @param array*/public static void bubbleSort(int[]array){for (int i = 0; i < array.length-1; i++) {//趟数boolean flg =false;for (int j = 0; j < array.length-1-i; j++) {if (array[j]>array[j+1]){swap(array,j,j+1);flg = true;}}if (flg == false){return;}}}

1.遍历 i 代表交换的趟数,遍历 j 进行两两交换

2.j < array.length-1-i 是对于趟数的优化,每走一趟,交换就少一次

3.boolean flg =false;当两两交换时,flg变为true

4.进一步优化:如果遍历完,没发生交换,flg还是false,直接返回,排序结束

  • 时间复杂度:O ( N2 )
  • 空间复杂度:O ( 1 )
  • 稳定性:稳定

2.快速排序

  • 时间复杂度:

    最好情况:O (N*log2N) :树的高度为log2N,每一层都是N

    最坏情况:O (N2):有序、逆序的情况下,没有左树,只有右树,单分支树,树的高度是N,每一层都是N

  • 空间复杂的:

    最好情况:O (log2N):满二叉树(均匀分割待排序的序列,效率最高)树高为 log2N

    最坏情况:O(N):单分支树,树高为N

  • 稳定性:不稳定

  • 二叉树结构的交换排序方法

  • 任取一个待排序元素作为基准值,把序列一分为二,左子序都比基准值小,右子序都比基准值大,左右两边再重复进行

在这里插入图片描述

  • 左边找比基准值大的,右边找比基准值小的
1.挖坑法

在这里插入图片描述

  • 基准值位置挖一个坑,后面找一个比基准值小的把坑埋上
  • 前面找一个比基准值大的,埋后面的坑
  • 当l==r时,把基准值填入剩下的坑中

在这里插入图片描述

  • 左右两边重复进行上述步骤,直到排完为止
  • 左右两边都以同样的方法进行划分,运用递归来实现
    /*** 快速排序* 时间复杂度:N*log~2~N* 空间复杂度* * @param array*/public static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;//结束条件// start == end,说明只剩一个了,是有序的,返回//start > end ,说明此时的基准值在开头或者末尾//在开头:start不变,end=pivot-1,start > end ,end=-1 没有左树//在结尾:end不变,start = pivot+1,start > end,超出索引,没有右树}//不断递归quickint pivot = partition(array, start, end);// 进行排序,划分找到pivot//然后递归划分法左边,递归划分的右边quick(array, start, pivot - 1);quick(array, pivot + 1, end);}// ---挖坑法  划分,返回基准值private static int partition(int[] array, int left, int right) {int tmp = array[left];//挖一个坑,取left位置为基准值while (left < right) {//在右边找一个比基准值小的把坑填上while (left < right && array[right] >= tmp) {//防止越界right--;}array[left] = array[right];//找到比tmp小的数,填坑,//在左边找一个比tmp大的值,填到右边的坑while (left < right && array[left] <= tmp) {//防止越界left++;}array[right] = array[left];}//如果相遇了,退出循环array[left] = tmp;//填坑return left;}
  • 先划分序列,递归左边,然后再递归右边

  • 递归结束条件:

    start == end时,说明只剩一个了,是有序的,返回
    start > end 时 ,说明此时的基准值在开头或者末尾

    如果基准值在开头:start不变,end=pivot-1,start > end ,end=-1 没有左树
    如果基准值在结尾:end不变,start = pivot+1,start > end,超出索引,没有右树


2.Hoare法

在这里插入图片描述

  • 不同的方法,找出基准值,排的序列是不一样的

在这里插入图片描述

  • i记录基准值一开始在left位置的下标
  • r找到比基准值小的停下来,l找到比基准值大的停下来,互相交换
  • l和r相遇的时候,把i 记录基准值的初始下标和相遇位置交换

以左边为基准,先找右边再找左边,相遇的位置就是以右边为基准的值,要比基准小,才能交换

    /*** Hoare法 划分排序找基准值* @param array* @param left* @param right* @return*/private static int partition2(int[] array, int left, int right) {int tmp = array[left];int i  = left;//记录基准值一开始在left位置的下标while (left < right) {while (left < right && array[right] >= tmp) {right--;}while (left < right && array[left] <= tmp) {left++;}swap(array,left,right);}swap(array,i,left);return left;}
3.前后指针法

在这里插入图片描述

在这里插入图片描述

  • prev记录了比key小的最后一个位置
  • cur去找比key值小的,找到后,放到prev的下一个位置
  • 最后找到基准值,并且基准值的左边都比它小,右边都比他大
    /*** 前后指针法,划分排序找基准值** @param array* @param left* @param right* @return*/private static int partition3(int[] array, int left, int right) {int prev = left; //prev从left位置开始,left为当前的基准值int cur = left + 1;//cur在prev的后一个while (cur <= right) {//遍历完当前数组段if (array[cur] < array[left] && array[++prev] != array[cur]) {//只要cur指向的值小于left位置的基准值//并且prev++后不等于cur的值swap(array, cur, prev);//将cur和prev位置的值交换//cur++;}//如果cur的值大于基准值,或者prev下一位的值等于cur,cur后移cur++;}//cur越界,循环结束,最后,交换基准值和prev位置的值//prev记录的就是比基准值小的最后一个数swap(array, prev, left);return prev;//prev为基准值}
4.快速排序的优化
  • 时间复杂度:

    最好情况:O (N*log2N) :树的高度为log2N,每一层都是N

    最坏情况:O (N2):有序、逆序的情况下,没有左树,只有右树,单分支树,树的高度是N,每一层都是N

  • 空间复杂的:

    最好情况:O (log2N):满二叉树(均匀分割待排序的序列,效率最高)树高为 log2N

    最坏情况:O(N):单分支树,树高为N

  • 稳定性:不稳定

  • 快速排序有可能发生栈溢出异常,需要进行优化

  • 所以要能均匀分割待排序的序列

递归的次数多了,会导致栈溢出,所以优化的方向就是减少递归的次数

在最坏情况下,比如顺序,基准值都取自左边,本身没有左树

方法一:随机选取基准值

看人品,有概率

方法二:三数取中法选基准值

三数:第一个数、中间的数、最后一个数 ,在这三个数中,选出中等值

有可能会变成二分查找 ,避免了出现最坏情况,从中值来比较排序,左右树都有

    public static void quickSort(int[] array) {quick2(array, 0, array.length - 1);}private static void quick2(int[] array, int start, int end) {if (start >= end) {return;//结束条件}//三数取中法int index = midThree(array, start, end);//选出的数和开头交换swap(array,index,start);int pivot = partition(array, start, end);// 进行排序,划分找到pivot//然后递归划分法左边,递归划分的右边quick2(array, start, pivot - 1);quick2(array, pivot + 1, end);}/*** 三数取中* @param array* @param left* @param right* @return*/private static int midThree(int[] array, int left, int right) {int mid = (left + right) / 2;if (array[left] < array[right]) {if (array[mid] < array[left]) {return left;} else if (array[mid] > array[right]) {return right;} else {return mid;}} else {if (array[mid] < array[right]) {return right;} else if (array[mid] > array[left]) {return left;} else {return mid;}}}
方法三:递归到最小区间时、用插入排序

进一步优化:减少递归的次数:

  • 把快排的递归想象成二叉树,最后两层包含了大部分数,我们要减少这部分的递归

  • 前几次的找基准值排序,导致后面几层趋于有序,用直接插入法来排序,进一步提高效率,有点像希尔排序

如果树的高度为h,最后一层就有 2 h-1 个结点 ,后两层占了绝大部分

设置条件:end-start+1 就是当前待排序列的长度,如果小于等于某个较小的值,直接采用插入排序来排剩下的

 private static void quick2(int[] array, int start, int end) {if (start >= end) {return;//结束条件}//优化----减少递归的次数if(end-start+1<=20){//如果当前数列的长度,小于=15的时候,// 用插入排序,然后退出insertSortQ(array,start,end);return;}//三数取中法int index = midThree(array, start, end);swap(array,index,start);int pivot = partition(array, start, end);// 进行排序,划分找到pivot//然后递归划分法左边,递归划分的右边quick2(array, start, pivot - 1);quick2(array, pivot + 1, end);}/*** 插入排序---来排剩下的待排部分,给定需要的区间*/private static void insertSortQ(int[] array,int left,int right) {for (int i = left+1; i <= right; i++) {int tmp = array[i];int j = i - 1;for (; j >= left; j--) {if (array[j] > tmp) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}
5.快速排序非递归实现
  • 1.通过使用栈来实现
  • 2.每次找到基准值后,把两段序列的开头和末尾压栈
  • 3.从栈顶取出两个元素作为新序列的首尾,再次找基准值
  • 4.找到基准值后,如果右边有一个元素,不进栈,有两个元素的才能进栈
  • 5.pivot< end-1:证明右边有两个元素,pivot>s+1:证明左边有两个元素
  • 6.栈为空的时候,排完元素
      /*** 非递归实现快速排序** @param array*/public static void quickSortNonRecursive(int[] array) {Deque<Integer> stack = new LinkedList<>();//利用栈来实现int left = 0;int right = array.length - 1;//先找到基准值int pivot = partition(array, left, right);//左边有两个元素时,根据基准值进栈if (pivot > left + 1) {stack.push(left);stack.push(pivot - 1);}//有边有两个元素时,根据基准值进栈if (pivot < right - 1) {stack.push(pivot + 1);stack.push(right);}//栈不为空的时候,取两个栈顶元素做为区间//再次进栈出栈while (!stack.isEmpty()) {right = stack.pop();left = stack.pop();pivot = partition(array, left, right);//左边有两个元素时,根据基准值进栈if (pivot > left + 1) {stack.push(left);stack.push(pivot - 1);}//有边有两个元素时,根据基准值进栈if (pivot < right - 1) {stack.push(pivot + 1);stack.push(right);}}}

点击移步博客主页,欢迎光临~

偷cyk的图

这篇关于六大排序详讲(直接插入排序+希尔排序+选择排序+堆排序+冒泡排序+快速排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/403888

相关文章

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

在Java中实现堆排序的步骤详解

《在Java中实现堆排序的步骤详解》堆排序是一种基于堆数据结构的排序算法,堆是一种特殊的完全二叉树,堆排序利用堆的性质通过一系列操作将数组元素按升序或降序排列,本文给大家介绍了如何在Java中实现堆排... 目录引言一、堆排序的基本原理二、堆排序的实现步骤三、堆排序的时间复杂度和空间复杂度四、堆排序的工作流

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验