生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法

本文主要是介绍生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

场景:

我目前设计到的场景是:以路面上行驶的汽车为例,即在地图应用中,对GPS轨迹数据进行压缩,减少数据传输和存储开销,因为轨迹点太频繁了,占用空间太大,运行节点太慢了,经过小组讨论需要上这个算法。

涉及到的算法

  1. Douglas-Peucker算法:该算法通过递归地将轨迹分割为线段,并丢弃那些与整体轨迹偏差较小的线段,从而实现轨迹的压缩。
    1. Visvalingam-Whyatt算法:该算法基于三角形面积的概念,通过不断移除面积最小的点来达到轨迹压缩的目的

                                图片来源:郑宇博士《computing with spatial trajectories》

Haversine公式计算距离和Douglas-Peucker压缩算法代码实现-scala版

import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import scala.math._// 定义表示点的类
case class Point(lon: Double, lat: Double, time: String, id: String)// Haversine距离计算函数
def haversineDistance(point1: Point, point2: Point): Double = {val R = 6371000.0 // 地球半径(米)val dLat = toRadians(point2.lat - point1.lat)val dLon = toRadians(point2.lon - point1.lon)val a = pow(sin(dLat / 2), 2) + cos(toRadians(point1.lat)) * cos(toRadians(point2.lat)) * pow(sin(dLon / 2), 2)val c = 2 * atan2(sqrt(a), sqrt(1 - a))R * c
}// Douglas-Peucker轨迹压缩函数
def douglasPeucker(points: List[Point], epsilon: Double): List[Point] = {if (points.length < 3) {return points}val dmax = points.view.zipWithIndex.map { case (point, index) =>if (index != 0 && index != points.length - 1) {perpendicularDistance(point, points.head, points.last)} else {0.0}}.maxif (dmax > epsilon) {val index = points.view.zipWithIndex.maxBy { case (point, index) =>if (index != 0 && index != points.length - 1) {perpendicularDistance(point, points.head, points.last)} else {0.0}}._2val recResults1 = douglasPeucker(points.take(index+1), epsilon)val recResults2 = douglasPeucker(points.drop(index), epsilon)recResults1.init ::: recResults2} else {List(points.head, points.last)}
}val spark = SparkSession.builder().appName("TrajectoryCompression").getOrCreate()// 接入包含lon、lat、time和id列的DataFrame
//https://blog.csdn.net/qq_52128187?type=blog,by_laoli
val data = Seq((40.7128, -74.0060, "2023-11-18 08:00:00", "1"),(40.7215, -74.0112, "2023-11-18 08:05:00", "1"),(40.7312, -74.0146, "2023-11-18 08:10:00", "1"),(40.7356, -74.0162, "2023-11-18 08:15:00", "1"),(40.7391, -74.0182, "2023-11-18 08:20:00", "1"),(40.7483, -74.0224, "2023-11-18 08:25:00", "1"),(40.7527, -74.0260, "2023-11-18 08:30:00", "1")
).toDF("lon", "lat", "time", "id")// 为DataFrame添加id列
val dfWithId = data.withColumn("id", monotonically_increasing_id())// 将DataFrame转换为Point列表
val points = dfWithId.as[(Double, Double, String, Long)].collect().map(p => Point(p._1, p._2, p._3, p._4.toString)).toList// 执行轨迹压缩
val compressedPoints = douglasPeucker(points, epsilon = 10)  
// <- 设置epsilon值// 将压缩后的数据重新转换为DataFrame
import spark.implicits._
val df2 = compressedPoints.toDF("lon", "lat", "time", "id")

参考文章

  • Douglas, D.H., and Peucker, T.K. "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature." The Canadian Cartographer 10.2 (1973): 112-122.
  • Visvalingam, M., and Whyatt, J.D. "Line generalization by repeated elimination of the smallest-area triangle." Cartographic Journal 30.1 (1993): 46-51.
  • 轨迹数据压缩的Douglas-Peucker算法(附代码及原始数据) - 知乎

这篇关于生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402626

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖