数据预处理pandas pd.json_normalize占用内存过大优化

2023-11-21 10:52

本文主要是介绍数据预处理pandas pd.json_normalize占用内存过大优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

从ES下载数据,数据格式为json,然后由pandas进行解析,json中的嵌套字段会进行展开作为列名(由于维度初期无法预测,所以根据数据有啥列就使用啥列,这是最方便的点),变成表格,方面了后续的处理,但在使用过程却发现原本6.xG的数据量在解析,预处理时候会变成60多G,甚至80G的内存占用,资源难以满足

解决

为了方便测试,使用了一个300MB大小的数据进行测试
1.为什么原本的300MB数据量会占用2G内存呢,仅仅下面一个操作

df = pd.json_normalize(datas)

思考:
(1)python是面向全对象语言,所以里面每一个数值都会是对象,这个对象很大
(2)数据集合json中的指标字段并不对齐,例如datas = [{field1:100},{“field1”:90,“field2”:12}],既然pandas是表格,总要填充
验证思考1
查询pd对象,果然用大的对象来存储,数据表中共有2732列,13列是等文本数据对应object,2675为float64,44列为int64,然而pd.json_normalize方法没有设置字段类型

print(df.info())
------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Columns: 2732 entries, feild1 to feild2
dtypes: float64(2675), int64(44), object(13)
memory usage: 2.0+ GB

在这里插入图片描述
验证思考2
其中一个json有新的字段score,发现增加24个字节,说明每条8字节,做了填充

a1 = json.loads('{"name":"zhangsan","age":12}')
a2 = json.loads('{"name":"zhangsan","age":12}')
a3 = json.loads('{"name":"zhangsan","age":12}')
aa = list()
aa.append(a1)
aa.append(a2)
aa.append(a3)
df = pd.json_normalize(aa)
print(df.info())
---------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):#   Column  Non-Null Count  Dtype 
---  ------  --------------  ----- 0   name    3 non-null      object1   age     3 non-null      int64 
dtypes: int64(1), object(1)
memory usage: 176.0+ bytes
a1 = json.loads('{"name":"zhangsan","age":12}')
a2 = json.loads('{"name":"zhangsan","age":12}')
a3 = json.loads('{"name":"zhangsan","age":12,"scroe":100}')
print(df.info())
---------------------------
memory usage: 200.0+ bytes

解决问题:
(1)如果原始datas数据量太大,那么只能使用pd.json_normalize分批读取后保存csv,(后面合并的时候可能会涉及拼接,这里不展开)
(2)读取csv,指定字段和字段类型,例如读取浮点类型的字段,这里单精度float32就可以啦

pd.read_csv(path, usecols=["浮点列1","浮点列2"], dtype=np.float32)

2.可能中间过程还会涉及拆分训练集,验证集,标准化等,还可以使用del先释放不需要的内存(注意del的对象要确保无引用,否则del无效)

train_x, valid_x, train_y, valid_y = train_test_split(datas, y_index, y, test_size=0.3, random_state=42)
del datas #确保datas无其他引用

这篇关于数据预处理pandas pd.json_normalize占用内存过大优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401901

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6