一道简单的无穷级数题目

2023-11-21 10:12

本文主要是介绍一道简单的无穷级数题目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 求级数 ∑ n = 1 + ∞ n x n \sum _{n=1} ^ {+\infty} n x^n n=1+nxn

解析:


s = ∑ n = 1 + ∞ n x n s = \sum _{n=1} ^ {+\infty} n x^n s=n=1+nxn

s 1 = ∑ n = 1 + ∞ n x n − 1 s_1 = \sum _{n=1} ^ {+\infty} n x^{n-1} s1=n=1+nxn1

s = s 1 x s = s_1 x s=s1x

∫ s 1 d x = ∑ n = 1 n = ∞ x n = 1 1 − x − 1 = x 1 − x \int s_1 dx = \sum_{n=1}^{n = \infty}x^n = \frac{1}{1-x} - 1 = \frac{x}{1-x} s1dx=n=1n=xn=1x11=1xx

且x的收敛域为(0,1)

s 1 = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 s_1 = (\frac{x}{1-x})' = \frac{1}{(1-x)^2} s1=(1xx)=(1x)21

s = s 1 x = x ( 1 − x ) 2 x ∈ ( 0 , 1 ) s = s_1 x =\frac{x}{(1-x)^2} \quad x \in (0,1) s=s1x=(1x)2xx(0,1)

解出上题中需要知道的一个重要的知识点是 1 1 − x \frac{1}{1-x} 1x1的泰勒展开式:

1 1 − x = 1 + 1 1 ! ( 1 ( 1 − x ) 2 ∣ x = 0 ) x + 1 2 ! ( 2 ( 1 − x ) 3 ∣ x = 0 ) x 2 + + 1 3 ! ( 3 ! ( 1 − x ) 4 ∣ x = 0 ) x 3 + 1 4 ! ( 4 ! ( 1 − x ) 5 ∣ x = 0 ) x 4 + 1 5 ! ( 5 ! ( 1 − x ) 6 ∣ x = 0 ) x 5 + . . . + 1 ( n − 1 ) ! ( ( n − 1 ) ! ( 1 − x ) n ∣ x = 0 ) x n − 1 + 1 n ! ( n ! ( 1 − x ) n + 1 ∣ x = 0 ) x n = 1 + x + x 2 + x 3 + x 4 + x 5 + . . . + x n − 1 + x n = ∑ n = 0 + ∞ x n \frac{1}{1-x} = 1 + \frac{1}{1!} (\frac{1}{(1-x)^2}| _{x = 0}) x+\frac{1}{2!} (\frac{2}{(1-x)^3}| _{x = 0})x^2 + \\ +\frac{1}{3!}(\frac{3!}{(1-x)^4}| _{x = 0})x^3+\frac{1}{4!}(\frac{4!}{(1-x)^5}| _{x = 0})x^4+\frac{1}{5!}(\frac{5!}{(1-x)^6}| _{x = 0})x^5+...\\ +\frac{1}{(n-1)!}(\frac{(n-1)!}{(1-x)^n}| _{x = 0})x^{n-1}+\frac{1}{n!}(\frac{n!}{(1-x)^{n+1}}| _{x = 0})x^{n} = \\ 1 + x + x^2 + x^3 + x^4 + x^5 + ... + x^{n-1} + x^n = \sum_{n=0}^{+\infty} x^n 1x1=1+1!1((1x)21x=0)x+2!1((1x)32x=0)x2++3!1((1x)43!x=0)x3+4!1((1x)54!x=0)x4+5!1((1x)65!x=0)x5+...+(n1)!1((1x)n(n1)!x=0)xn1+n!1((1x)n+1n!x=0)xn=1+x+x2+x3+x4+x5+...+xn1+xn=n=0+xn

上述式子是等比数列,根据等比数列的性质,公比x要小于1才收敛。当然根绝达朗贝尔判别法,也可以得出收敛半径是(0,1)

  1. 求极限 lim ⁡ x → 0 sin ⁡ ( sin ⁡ x ) − x x 3 \lim_{x \to 0} \frac{\sin(\sin x) - x}{x^3} x0limx3sin(sinx)x

解:

lim ⁡ x → 0 sin ⁡ ( sin ⁡ x ) − x x 3 = lim ⁡ x → 0 sin ⁡ x − sin ⁡ 3 x 6 − x x 3 = lim ⁡ x → 0 x − x 3 6 − x 3 6 − x x 3 = − 1 / 3 \lim_{x \to 0} \frac{\sin(\sin x) - x}{x^3} =\lim_{x \to 0} \frac{\sin x - \frac{\sin ^ 3x}{6}- x}{x^3} = \\ \lim_{x \to 0} \frac{x - \frac{x^3}{6} - \frac{x^3 }{6}- x}{x^3} = -1/3 x0limx3sin(sinx)x=x0limx3sinx6sin3xx=x0limx3x6x36x3x=1/3

注意:在计算 sin ⁡ 3 x 6 \frac{\sin ^ 3x}{6} 6sin3x的泰勒展开时要小心,不要丢项。

这篇关于一道简单的无穷级数题目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401679

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav