本文主要是介绍(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
'''
异或
0^0 = 0
0^1 = 1
1^0 = 1
1^1 = 0
'''
import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0],[1,0,1],[1,1,0], [1,1,1]])
#标签
Y = np.array([[-1],[1],[1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.sign(np.dot(X,W)) # shape:(3,1)W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C
for i in range(100):update()#更新权值print(W)#打印当前权值print(i)#打印迭代次数O = np.sign(np.dot(X,W))#计算当前输出 if(O == Y).all(): #如果实际输出等于期望输出,模型收敛,循环结束print('Finished')print('epoch:',i)break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
k = -W[1]/W[2]
d = -W[0]/W[2]
print('k=',k)
print('d=',d)xdata = (-2,3)plt.figure()
plt.plot(xdata,xdata*k+d,'r')
plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()#最后的结果我们发现它是执行了100次才跳出循环,说明无法用一条直线来进行非线性分类问题
线性神经网络
import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,3,3],[1,4,3],[1,1,1],[1,0,2]])
#标签
Y = np.array([[1],[1],[-1],[-1]])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random([3,1])-0.5)*2print(W)
#学习率设置
lr = 0.11
#神经网络输出
O = 0def update():global X,Y,W,lrO = np.dot(X,W) #因为线性用得函数是y=x所以这里可以直接写,而不是引用激活函数W_C = lr*(X.T.dot(Y-O))/int(X.shape[0])W = W + W_C
for _ in range(100):update()#更新权值#正样本x1 = [3,4]y1 = [3,3]#负样本x2 = [1,0]y2 = [1,2]#计算分界线的斜率以及截距k = -W[1]/W[2]d = -W[0]/W[2]print('k=',k)print('d=',d)xdata = (0,5)plt.figure()plt.plot(xdata,xdata*k+d,'r')plt.scatter(x1,y1,c='b')plt.scatter(x2,y2,c='y')plt.show()
过程
Delta学习规则
梯度下降法——一维情况
梯度下降法——二维情况
解决异或问题
import numpy as np
import matplotlib.pyplot as plt
#输入数据
X = np.array([[1,0,0,0,0,0],[1,0,1,0,0,1],[1,1,0,1,0,0],[1,1,1,1,1,1]])
#标签
Y = np.array([-1,1,1,-1])#权值初始化,3行1列,取值范围-1到1
W = (np.random.random(6)-0.5)*2print(W)
#学习率设置
lr = 0.11
#计算迭代次数
n = 0
#神经网络输出
O = 0def update():global X,Y,W,lr,nn+=1O = np.dot(X,W.T) #因为线性用得函数是y=x所以这里可以直接写,而不是引用函数W_C = lr*((Y-O.T).dot(X))/int(X.shape[0])W = W + W_C
for _ in range(1000):update()#更新权值
# print(W)#打印当前权值
# print(n)#打印当前迭代次数# -0.1,0.1,0.2,-0.2#-1,1,1,-1
# o = np.sign(np.dot(X,W.T))#计算当前输出
# if(O == Y.T).all(): #如果实际输出等于期望输出,模型收敛,循环结束
# print('Finished')
# print('epoch:',n)
# break#正样本
x1 = [0,1]
y1 = [1,0]
#负样本
x2 = [0,1]
y2 = [0,1]#计算分界线的斜率以及截距
# k = -W[1]/W[2]
# d = -W[0]/W[2]
# print('k=',k)
# print('d=',d)def calculate(x,root):a = W[5]b = W[2]+x*W[4]c = W[0]+x*W[1]+x**2*W[3]if root==1:return (-b+np.sqrt(b*b-4*a*c))/(2*a)if root==2:return (-b-np.sqrt(b*b-4*a*c))/(2*a)xdata = np.linspace(-1,2)plt.figure()plt.plot(xdata,calculate(xdata,1),'r')
plt.plot(xdata,calculate(xdata,2),'r')plt.scatter(x1,y1,c='b')
plt.scatter(x2,y2,c='y')
plt.show()print(W)
o = np.dot(X,W.T)
print(o)
这篇关于(实践)单层感知器——异或问题线性神经网络,Delta学习规则线性神经网络解决异或问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!