【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码

2023-11-20 22:40

本文主要是介绍【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内容介绍

现代社会的无人机成本造价低、不易损耗、轻巧灵便、易躲藏、能精确打击

目标这些特点,使其在一些高危任务中发挥了不可替代的作用[5]。无人机的用处主要有两种:民用和军事。在民用方面,我们可以运用无人机对一些可能出现隐患的事物进行监控,比如对震后灾区的地面勘探、森林火灾的检测、风暴中心的气象数据等。在 2014 索契奥运会上,无人机携带的摄像拍摄的画面更贴近运动员,画质更为清晰,2018 中国新年春晚上大量无人机组成的海豚造型惊艳了世界。在军事方面,我们可以运用无人机进行一些特殊任务的执行,比如对毒贩的监视工作,边境的巡防工作,无人机侦查、搜救、预警等。无人机的运用使我们在一些事情上实现了无人员伤亡。军事无人机是当今时代无人机技术的高水准体现。伴随着日益成熟的无人机技术,对航路规划的研究也愈加深入。航路规划的前提是在一定的约束条件下,然后寻求可飞行航路。对于无人机而言它自身的主要约束条件有:最大的载重量、可以上升的门限高度、空载时耗油量、起飞时承载的重量等,在飞行时要考虑地形存在的威胁和是否存在禁飞区等。相对国外研究,我国还没有比较成熟的航路规划体系,但是对航路规划的研究热情我国日益加强.飞行过程中有时会遇到一些突发事故,无人机在此时不能按照预先规划的航迹继续进行,需要无人机能够在当前的环境下动态的规划出一条满足要求的航路,也说明了航路规划的静态和实时动态规划相结合的算法是我们未来的一个研究趋势。

随着现代社会的不断发展,电子信息技术研究不断深入,无人机航路规划越

来越智能化。现代社会由于飞机的特殊性,其安全性一直是我们最为关心的话题,因为一旦发生一点点事故,往往伴随着生命的代价,所以在面对一些内部环境比较复杂的地方时,可以使用一些有着特殊功能的无人机,它们在无人的状态下可以将性能调整到最优,在执行任务的过程中不用担心其产生人员伤亡,而且无人机的活动区域比较广泛,不限单次使用,能够执行多种任务。现代战场上无人机的威力发挥很大程度上取决于航路规划的合理性。根据模型,航路规划通常会产生很多条满足条件的航路,而我们要做的就是快速、准确找到这些满足要求航路中的最优一条。随着无人机的硬件和软件技术的不断成熟,无人机航路规划技术也必将得到更好的发展和更广泛的应用.

蚂蚁算法是一种新的源于大自然生物界的仿生随机优化方法.吸收了昆虫中蚂蚁的行为特征,通过其内在的搜索机制,在一系列组合优化问题求解中取得了成效.将蚁群算法应用于无人机(UAV)航路规划,提出了一种适用于航路规划的优化方法,可以为在敌方防御区域内执行攻击任务的无人机规划设计出高效的飞行航路,保证无人机以最小的被发现概率及可接受航程到达目标点,提高了无人机作战任务的成功率.仿真结果初步表明该方法是一种有效的航路规划方法.

2 仿真代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=Antcolonyalgorithm(C,NC_max,m,Alpha,Beta,Rho,Q)%% 输入输出说明% C城市的坐标% NC_max 最大迭代次数% m 蚂蚁个数% Rho 信息素蒸发系数% Q 信息素增加强度系数% R_best 最佳路线% L_best 最佳路线的长度% Alpha 信息素重要程度% Beta 启发式因子重要程度%变量初始化n=size(C,1);D=zeros(n,n);for i=1:n    for j=1:n        if i~=j            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;        else            D(i,j)=eps;        end        D(j,i)=D(i,j);    endendEta=1./D;Tau=ones(n,n); Tabu=zeros(m,n);NC=1;R_best=zeros(NC_max,n);L_best=inf.*ones(NC_max,1);L_ave=zeros(NC_max,1); while NC<=NC_max     Randpos=[];    for i=1:(ceil(m/n))        Randpos=[Randpos,randperm(n)];    end    Tabu(:,1)=(Randpos(1,1:m))';    for j=2:n        for i=1:m            visited=Tabu(i,1:(j-1));             J=zeros(1,(n-j+1));            P=J;            Jc=1;            for k=1:n                if isempty(find(visited==k, 1))                J(Jc)=k;                Jc=Jc+1;                end            end            %概率分布            for k=1:length(J)                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);            end            P=P/(sum(P));            Pcum=cumsum(P);             Select=find(Pcum>=rand);            to_visit=J(Select(1));            Tabu(i,j)=to_visit;        end    end    if NC>=2        Tabu(1,:)=R_best(NC-1,:);    end    L=zeros(m,1);    for i=1:m        R=Tabu(i,:);        for j=1:(n-1)            L(i)=L(i)+D(R(j),R(j+1));         end        L(i)=L(i)+D(R(1),R(n));     end    L_best(NC)=min(L);    pos=find(L==L_best(NC));    R_best(NC,:)=Tabu(pos(1),:);     L_ave(NC)=mean(L);    NC=NC+1;    %更新信息素    Delta_Tau=zeros(n,n);    for i=1:m        for j=1:(n-1)            Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);        end        Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);    end    Tau=(1-Rho).*Tau+Delta_Tau;    %禁忌表清零    Tabu=zeros(m,n);end%输出结果Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:); Shortest_Length=L_best(Pos(1));end

3 运行结果

4 参考文献

[1]柳长安等. "蚁群算法在无人机航路规划中的应用." 火力与指挥控制 030.006(2005):22-24.

[2]刘钢,老松杨,侯绿林,等.知识引导的智能优化算法在航路规划中的应用[J].湖南大学学报(自

然科学版),2013,40(1):103-108.

[3]柳长安,梁广平,王和平,等.蚁群算法在无人机航路规划中的应用[J].火力与指挥控

制,2005,30(6):22-24.

[4]Cheng Z,Sun Y,Liu Y. Path planning based on immune genetic algorithm for UAV[C]//

International Conference on Electric Information and Control Engineering. IEEE, 2011:590-593.

[18]Sun J,Bao Y M,Wu S T. Cooperative route plan of initial stage for multiple missiles 52

formation[C]// Chinese Control and Decision Conference(ccdc. 2011:2487-2491​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

 

这篇关于【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397947

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的