【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码

2023-11-20 22:40

本文主要是介绍【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内容介绍

现代社会的无人机成本造价低、不易损耗、轻巧灵便、易躲藏、能精确打击

目标这些特点,使其在一些高危任务中发挥了不可替代的作用[5]。无人机的用处主要有两种:民用和军事。在民用方面,我们可以运用无人机对一些可能出现隐患的事物进行监控,比如对震后灾区的地面勘探、森林火灾的检测、风暴中心的气象数据等。在 2014 索契奥运会上,无人机携带的摄像拍摄的画面更贴近运动员,画质更为清晰,2018 中国新年春晚上大量无人机组成的海豚造型惊艳了世界。在军事方面,我们可以运用无人机进行一些特殊任务的执行,比如对毒贩的监视工作,边境的巡防工作,无人机侦查、搜救、预警等。无人机的运用使我们在一些事情上实现了无人员伤亡。军事无人机是当今时代无人机技术的高水准体现。伴随着日益成熟的无人机技术,对航路规划的研究也愈加深入。航路规划的前提是在一定的约束条件下,然后寻求可飞行航路。对于无人机而言它自身的主要约束条件有:最大的载重量、可以上升的门限高度、空载时耗油量、起飞时承载的重量等,在飞行时要考虑地形存在的威胁和是否存在禁飞区等。相对国外研究,我国还没有比较成熟的航路规划体系,但是对航路规划的研究热情我国日益加强.飞行过程中有时会遇到一些突发事故,无人机在此时不能按照预先规划的航迹继续进行,需要无人机能够在当前的环境下动态的规划出一条满足要求的航路,也说明了航路规划的静态和实时动态规划相结合的算法是我们未来的一个研究趋势。

随着现代社会的不断发展,电子信息技术研究不断深入,无人机航路规划越

来越智能化。现代社会由于飞机的特殊性,其安全性一直是我们最为关心的话题,因为一旦发生一点点事故,往往伴随着生命的代价,所以在面对一些内部环境比较复杂的地方时,可以使用一些有着特殊功能的无人机,它们在无人的状态下可以将性能调整到最优,在执行任务的过程中不用担心其产生人员伤亡,而且无人机的活动区域比较广泛,不限单次使用,能够执行多种任务。现代战场上无人机的威力发挥很大程度上取决于航路规划的合理性。根据模型,航路规划通常会产生很多条满足条件的航路,而我们要做的就是快速、准确找到这些满足要求航路中的最优一条。随着无人机的硬件和软件技术的不断成熟,无人机航路规划技术也必将得到更好的发展和更广泛的应用.

蚂蚁算法是一种新的源于大自然生物界的仿生随机优化方法.吸收了昆虫中蚂蚁的行为特征,通过其内在的搜索机制,在一系列组合优化问题求解中取得了成效.将蚁群算法应用于无人机(UAV)航路规划,提出了一种适用于航路规划的优化方法,可以为在敌方防御区域内执行攻击任务的无人机规划设计出高效的飞行航路,保证无人机以最小的被发现概率及可接受航程到达目标点,提高了无人机作战任务的成功率.仿真结果初步表明该方法是一种有效的航路规划方法.

2 仿真代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=Antcolonyalgorithm(C,NC_max,m,Alpha,Beta,Rho,Q)%% 输入输出说明% C城市的坐标% NC_max 最大迭代次数% m 蚂蚁个数% Rho 信息素蒸发系数% Q 信息素增加强度系数% R_best 最佳路线% L_best 最佳路线的长度% Alpha 信息素重要程度% Beta 启发式因子重要程度%变量初始化n=size(C,1);D=zeros(n,n);for i=1:n    for j=1:n        if i~=j            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;        else            D(i,j)=eps;        end        D(j,i)=D(i,j);    endendEta=1./D;Tau=ones(n,n); Tabu=zeros(m,n);NC=1;R_best=zeros(NC_max,n);L_best=inf.*ones(NC_max,1);L_ave=zeros(NC_max,1); while NC<=NC_max     Randpos=[];    for i=1:(ceil(m/n))        Randpos=[Randpos,randperm(n)];    end    Tabu(:,1)=(Randpos(1,1:m))';    for j=2:n        for i=1:m            visited=Tabu(i,1:(j-1));             J=zeros(1,(n-j+1));            P=J;            Jc=1;            for k=1:n                if isempty(find(visited==k, 1))                J(Jc)=k;                Jc=Jc+1;                end            end            %概率分布            for k=1:length(J)                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);            end            P=P/(sum(P));            Pcum=cumsum(P);             Select=find(Pcum>=rand);            to_visit=J(Select(1));            Tabu(i,j)=to_visit;        end    end    if NC>=2        Tabu(1,:)=R_best(NC-1,:);    end    L=zeros(m,1);    for i=1:m        R=Tabu(i,:);        for j=1:(n-1)            L(i)=L(i)+D(R(j),R(j+1));         end        L(i)=L(i)+D(R(1),R(n));     end    L_best(NC)=min(L);    pos=find(L==L_best(NC));    R_best(NC,:)=Tabu(pos(1),:);     L_ave(NC)=mean(L);    NC=NC+1;    %更新信息素    Delta_Tau=zeros(n,n);    for i=1:m        for j=1:(n-1)            Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);        end        Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);    end    Tau=(1-Rho).*Tau+Delta_Tau;    %禁忌表清零    Tabu=zeros(m,n);end%输出结果Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:); Shortest_Length=L_best(Pos(1));end

3 运行结果

4 参考文献

[1]柳长安等. "蚁群算法在无人机航路规划中的应用." 火力与指挥控制 030.006(2005):22-24.

[2]刘钢,老松杨,侯绿林,等.知识引导的智能优化算法在航路规划中的应用[J].湖南大学学报(自

然科学版),2013,40(1):103-108.

[3]柳长安,梁广平,王和平,等.蚁群算法在无人机航路规划中的应用[J].火力与指挥控

制,2005,30(6):22-24.

[4]Cheng Z,Sun Y,Liu Y. Path planning based on immune genetic algorithm for UAV[C]//

International Conference on Electric Information and Control Engineering. IEEE, 2011:590-593.

[18]Sun J,Bao Y M,Wu S T. Cooperative route plan of initial stage for multiple missiles 52

formation[C]// Chinese Control and Decision Conference(ccdc. 2011:2487-2491​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

 

这篇关于【路径规划】基于蚁群算法实现无人机uav巡检附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397947

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示