使用numba cuda 加速Python运算

2023-11-20 21:44

本文主要是介绍使用numba cuda 加速Python运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用numba cuda 加速Python运算

  • 1.随机数生成
  • 参考文献

习惯了cuda c,可能会认为cuda和c才是黄金档搭。

Python作为一种开发效率比较高的脚本语言,有助于我们快速实现某种功能。

但是Python执行效率极其之慢。

这种情况下,用cuda的高并发特性,来提升Python执行速度,是一种很好的选择。

1.随机数生成

随机数生成是一项很重要的功能。

当Python自带的random,np.random在cuda函数中无法直接使用时,这是一个非常头疼的事。

有一个方法是将随机数/序列提前在cuda函数外实现好,再传递给cuda核函数使用,但是这就要占用cuda的显存,同时还要考虑加载数据的时间。

幸好的事numba提供了numba.cuda.random,可以便于我们生成随机数。

numba random官方网页中提供了一个示例,通过均匀分布来实现pi的计算。

由于numba.cuda.random.xoroshiro128p_normal_float64默认生成 N ( 0 , 1 ) N(0,1) N(0,1)分布序列。

这里提供一个使用numba.cuda.random来生成复合高斯分布(如均值为100,方差为30的)的随机数:

N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布的序列转成 N ( 0 , 1 ) N(0,1) N(0,1),标准化公式为:

y = x − μ δ \qquad\qquad y=\cfrac{x-\mu}{\sqrt{\delta}} y=δ xμ

故从有 N ( 0 , 1 ) N(0,1) N(0,1)分布的序列转成 N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布,为:

y = δ ⋅ x + μ \qquad\qquad y=\sqrt{\delta} \cdot x+\mu y=δ x+μ

代码如下:

from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float64import numpy as np
import math@cuda.jit
def random_gen(rng_states,  out):"""Find the maximum value in values and store in result[0]"""thread_id = cuda.grid(1)print("thread_id",thread_id)out[thread_id]=xoroshiro128p_normal_float64(rng_states, thread_id)out[thread_id]=int(out[thread_id]*math.sqrt(30)+100)threads_per_block = 16
blocks = 16
rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=1)
out = np.zeros((threads_per_block * blocks), dtype=np.float32)
out_d = cuda.to_device(out)
random_gen[blocks, threads_per_block](rng_states, out_d)
out = out_d.copy_to_host()
print('\n', out)

产生如下序列:

 [ 92. 100.  97. 101.  95. 103. 101. 105.  92. 101. 100.  97.  91.  90.97. 104. 100.  98.  97. 102. ...]

用numpy可求得均值和方差分别为:

99.609375  30.902099609375

生成整数随机序列,可以通过均匀分布,再经过适当放缩、平移实现,如采用(0,1)均匀分布实现[0,100]整数的均匀采样:

int(100*xoroshiro128p_uniform_float64(rng_states, col))

参考文献

[1] https://numba.readthedocs.io/en/stable/
[2] 基于 Numba 的 CUDA Python 编程简介
[3] https://numba.pydata.org/numba-doc/latest/cuda/random.html

这篇关于使用numba cuda 加速Python运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397640

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作