使用numba cuda 加速Python运算

2023-11-20 21:44

本文主要是介绍使用numba cuda 加速Python运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用numba cuda 加速Python运算

  • 1.随机数生成
  • 参考文献

习惯了cuda c,可能会认为cuda和c才是黄金档搭。

Python作为一种开发效率比较高的脚本语言,有助于我们快速实现某种功能。

但是Python执行效率极其之慢。

这种情况下,用cuda的高并发特性,来提升Python执行速度,是一种很好的选择。

1.随机数生成

随机数生成是一项很重要的功能。

当Python自带的random,np.random在cuda函数中无法直接使用时,这是一个非常头疼的事。

有一个方法是将随机数/序列提前在cuda函数外实现好,再传递给cuda核函数使用,但是这就要占用cuda的显存,同时还要考虑加载数据的时间。

幸好的事numba提供了numba.cuda.random,可以便于我们生成随机数。

numba random官方网页中提供了一个示例,通过均匀分布来实现pi的计算。

由于numba.cuda.random.xoroshiro128p_normal_float64默认生成 N ( 0 , 1 ) N(0,1) N(0,1)分布序列。

这里提供一个使用numba.cuda.random来生成复合高斯分布(如均值为100,方差为30的)的随机数:

N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布的序列转成 N ( 0 , 1 ) N(0,1) N(0,1),标准化公式为:

y = x − μ δ \qquad\qquad y=\cfrac{x-\mu}{\sqrt{\delta}} y=δ xμ

故从有 N ( 0 , 1 ) N(0,1) N(0,1)分布的序列转成 N ( μ , s i g m a ) N(\mu,sigma) N(μ,sigma)分布,为:

y = δ ⋅ x + μ \qquad\qquad y=\sqrt{\delta} \cdot x+\mu y=δ x+μ

代码如下:

from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float64import numpy as np
import math@cuda.jit
def random_gen(rng_states,  out):"""Find the maximum value in values and store in result[0]"""thread_id = cuda.grid(1)print("thread_id",thread_id)out[thread_id]=xoroshiro128p_normal_float64(rng_states, thread_id)out[thread_id]=int(out[thread_id]*math.sqrt(30)+100)threads_per_block = 16
blocks = 16
rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=1)
out = np.zeros((threads_per_block * blocks), dtype=np.float32)
out_d = cuda.to_device(out)
random_gen[blocks, threads_per_block](rng_states, out_d)
out = out_d.copy_to_host()
print('\n', out)

产生如下序列:

 [ 92. 100.  97. 101.  95. 103. 101. 105.  92. 101. 100.  97.  91.  90.97. 104. 100.  98.  97. 102. ...]

用numpy可求得均值和方差分别为:

99.609375  30.902099609375

生成整数随机序列,可以通过均匀分布,再经过适当放缩、平移实现,如采用(0,1)均匀分布实现[0,100]整数的均匀采样:

int(100*xoroshiro128p_uniform_float64(rng_states, col))

参考文献

[1] https://numba.readthedocs.io/en/stable/
[2] 基于 Numba 的 CUDA Python 编程简介
[3] https://numba.pydata.org/numba-doc/latest/cuda/random.html

这篇关于使用numba cuda 加速Python运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397640

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空